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ABSTRACT

Planning the development, use and regulation of computer systems in nuclear reactor protection systems in such a
way as to enhance reliability and safety is a complex issue. This report is one of a series of reports from the
Computer Safety and Reliability Group, Lawrence Livermore National Laboratory, that investigates different
aspects of computer software in reactor protection systems. There are two central themes in the report. First,
software considerations cannot be fully understood in isolation from computer hardware and application
considerations. Second, the process of engineering reliability and safety into a computer system requires activities to
be carried out throughout the software life cycle. The report discusses the many activities that can be carried out
during the software life cycle to improve the safety and reliability of the resulting product. The viewpoint is
primarily that of the assessor, or auditor.
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EXECUTIVE SUMMARY

The development, use, and regulation of computer systems in nuclear reactor protection systems to enhance
reliability and safety is a complex issue. This report is one of a series of reports from the Computer Safety and
Reliability Group, Lawrence Livermore National Laboratory, which investigates different aspects of computer
software in reactor protection systems.

There are two central themes in this report. First, software considerations cannot be fully understood in isolation
from computer hardware and application considerations. Second, the process of engineering reliability and safety
into a computer system requires activities to be carried out throughout the software life cycle. These two themes
affect both the structure and the content of this report.

Reliability and safety are concerned with faults, errors, and failures. A fault is a triggering event that causes
things to go wrong; a software bug is an example. The fault may cause a change of state in the computer, which is
termed an error. The error remains latent until the incorrect state is used; it then is termed effective. It may then
cause an externally-visible failure. Only the failure is visible outside the computer system. Preventing or correcting
the failure can be done at any of the levels: preventing or correcting the causative fault, preventing the fault from
causing an error, preventing the error from causing a failure, or preventing the failure from causing damage. The
techniques for achieving these goals are termed fault prevention, fault correction, and fault tolerance.

Reliability and safety are related, but not identical, concepts. Reliability, as defined in this report, is a measure
of how long a system will run without failure of any kind, while safety is a measure of how long a system will run
without catastrophic failure. Thus safety is directly concerned with the consequences of failure, not merely the
existence of failure. As a result, safety is a system issue, not simply a software issue, and must be analyzed and
discussed as a property of the entire reactor protection system.

Faults and failures can be classified in several different ways. Faults can be described as design faults,
operational faults, or transient faults. All software faults are design faults; however, hardware faults may occur in
any of the three classes. This is important in a safety-related system since the software may be required to
compensate for the operational faults of the hardware. Faults can also be classified by the source of the fault;
software and hardware are two of the possible sources discussed in the report. Others are: input data, system state,
system topology, people, environment, and unknown. For example, the source of many transient faults is unknown.

Failures are classified by mode and scope. A failure mode may be sudden or gradual; partial or complete. All
four combinations of these are possible. The scope of a failure describes the extent within the system of the effects
of the failure. This may range from an internal failure, whose effect is confined to a single small portion of the
system, to a pervasive failure, which affects much of the system.

Many different life cycle models exist for developing software systems. These differ in the timing of the various
activities that must be done in order to produce a high-quality software product, but the actual activities must be
done in any case. No particular life cycle is recommended here, but there are extensive comments on the activities
that must be carried out. These have been divided into eight categories, termed sets of activities in the report. These
sets are used merely to group related activities; there is no implication that the activities in any one set must be all
carried out at the same time, or that activities in “later” sets must follow those of “earlier” sets. The eight categories
are as follows:
• Planning activities result in the creation of a number of documents that are used to control the development

process. Eleven are recommended here: a Software Project Management Plan, a Software Quality Assurance
Plan, a Software Configuration Management (CM) Plan, a Software Verification and Validation (V&V) Plan, a
Software Safety Plan, a Software Development Plan, a Software Integration Plan, a Software Installation Plan, a
Software Maintenance Plan, a Software Training Plan, and a Software Operations Plan. Many of these plans are
discussed in detail, relying on various ANSI/IEEE standards when these exist for the individual plans.

• The second set of activities relate to documenting the requirements for the software system. Four documents are
recommended: the Software Requirements Specification, a Requirements Safety Analysis, a V&V
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Requirements Analysis, and a CM Requirements Report. These documents will fully capture all the
requirements of the software project, and relate these requirements to the overall protection system functional
requirements and protection system safety requirements.

• The design activities include five recommended documents. The Hardware and Software Architecture will
describe the computer system design at a fairly high level, giving hardware devices and mapping software
activities to those devices. The Software Design Specification provides the complete design on the software
products. Design analyses include the Design Safety Analysis, the V&V Design Analysis, and the CM Design
Report.

• Implementation activities include writing and analyzing the actual code, using some programming language.
Documents include the actual code listings, the Code Safety Analysis, the V&V Implementation Analysis and
Test Report, and the CM Implementation Report.

• Integration activities are those activities that bring software, hardware, and instrumentation together to form a
complete computer system. Documents include the System Build Documents, the Integration Safety Analysis,
the V&V Integration Analysis and Test Report, and the CM Integration Report.

• Validation is the process of ensuring that the final complete computer system achieves the original goals that
were imposed by the protection system design. The final system is matched against the original requirements,
and the protection system safety analysis. Documents include the Validation Safety Analysis, the V&V
Validation and Test Report, and the CM Validation Report.

• Installation is the process of moving the completed computer system from the developer’s site to the
operational environment, within the actual reactor protection system. The completion of installation provides
the operator with a documented operational computer system. Seven documents are recommended: the
Operations Manual, the Installation Configuration Tables, Training Manuals, Maintenance Manuals, an
Installation Safety Analysis, a V&V Installation Analysis and Test Report, and a CM Installation Report.

• The operations and maintenance activities involve the actual use of the computer system in the operating
reactor, and making any required changes to it. Changes may be required due to errors in the system that were
not found during the development process, changes to hardware or requirements for additional functionality.
Safety analyses, V&V analyses, and CM activities are all recommended as part of the maintenance process.

Three general methods exist that may be used to achieve software fault tolerance; n-version programming,
recovery block, and exception handling. Each of these attempts to achieve fault tolerance by using more than one
algorithm or program module to perform a calculation, with some means of selecting the preferred result. In n-
version programming, three or more program modules that implement the same function are executed in parallel,
and voting is used to select the “correct” one. In recovery block, two or more modules are executed in series, with an
acceptance algorithm used after each module is executed to decide if the result should be accepted or the next
module executed. In exception handling, a single module is executed, with corrections made when exceptions are
detected. Serious questions exist as to the applicability of the n-version programming and the recovery-block
techniques to reactor protection systems, because of the assumptions underlying the techniques, the possibility of
common-mode failures in the voting or decision programs, and the cost and time of implementing them.

One means of assessing system reliability or safety is to create a mathematical model of the system and analyze
the properties of that model. This can be very effective providing that the model captures all the relevant factors of
the reality. Reliability models have been used for many years for electronic and mechanical systems. The use of
reliability models for software is fairly new, and their effectiveness has not yet been fully demonstrated. Fault tree
models, event tree models, failure modes and effects analysis, Markov models, and Petri net models all have
possibilities. Of particular interest are reliability growth models, since software bugs tend to be corrected as they are
found. Reliability Growth models can be very useful in understanding the growth of reliability through a testing
activity, but cannot be used alone to justify software for use in a safety-related application, since such applications
require a much higher level of reliability than can be convincingly demonstrated during a test-correct-test activity.
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Software Reliability and
Safety in Nuclear Reactor

Protection Systems

1.  INTRODUCTION

1.1.  Purpose

Reliability and safety are related, but not identical,
concepts. Reliability can be thought of as the
probability that a system fails in any way whatever,
while safety is concerned with the consequences of
failure. Both are important in reactor protection
systems. When a protection system is controlled by a
computer, the impact of the computer system on
reliability and safety must be considered in the reactor
design. Because software is an integral part of a
computer system, software reliability and software
safety become a matter of concern to the organizations
that develop software for protection systems and to the
government agencies that regulate the developers. This
report is oriented toward the assessment process. The
viewpoint is from that of a person who is assessing the
reliability and safety of a computer software system
that is intended to be used in a reactor protection
system.

1.2.  Scope

Software is only one portion of a computer system.
The other portions are the computer hardware and the
instrumentation (sensors and actuators) to which the
computer is connected. The combination of software,
hardware, and instrumentation is frequently referred to
as the Instrumentation and Control (I&C) System.
Nuclear reactors have at least two I&C systems—one
controls the reactor operation, and the other controls
the reactor protection. The latter, termed the Protection
Computer System, is the subject of this report.

This report assumes that the computer system as a
whole, as well as the hardware and instrumentation
subsystems, will be subject to careful development,
analysis, and assessment in a manner similar to that
given here for the software. That is, it is assumed that

there will be appropriate plans, requirements and
design specifications, procurement and installation,
testing and analysis for the complete computer system,
as well as the hardware, software, and instrumentation
subsystems. The complete computer system and the
hardware and instrumentation subsystems are
discussed here only as they relate to the software
subsystem.

The report is specifically directed toward enhancing
the reliability and safety of computer controlled reactor
protection systems. Almost anything can affect safety,
so it is difficult to bound the contents of the report.
Consequently material is included that may seem
tangential to the topic. In these cases the focus is on
reliability and safety; other aspects of such material are
summarized or ignored. More complete discussions of
these secondary issues may be found in the references.

This report is one of a series of reports prepared by the
Computer Safety and Reliability Group, Fission
Energy and System Safety Program, Lawrence
Livermore National Laboratory. Aspects of software
reliability and safety engineering that are covered in
the other reports are treated briefly in this report, if at
all. The reader is referred to the following additional
reports:

1. Robert Barter and Lin Zucconi, “Verification and
Validation Techniques and Auditing Criteria for
Critical System-Control Software,” Lawrence
Livermore National Laboratory, Livermore, CA
(February 1993).

2. George G. Preckshot, “Real-Time Systems
Complexity and Scalability,” Lawrence Livermore
National Laboratory, Livermore, CA (August
1992).
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3. George G. Preckshot and Robert H. Wyman,
“Communications Systems in Nuclear Power
Plants,” Lawrence Livermore National
Laboratory, Livermore, CA (August 1992).

4. George G. Preckshot, “Real-Time Performance,”
Lawrence Livermore National Laboratory,
Livermore, CA (November 1992).

5. Debra Sparkman, “Techniques, Processes, and
Measures for Software Safety and Reliability,”
Lawrence Livermore National Laboratory,
Livermore, CA (April 1992).

6. Lloyd G. Williams, “Formal Methods in the
Development of Safety Critical Software
Systems,” SERM-014-91, Software Engineering
Research, Boulder, CO (April 1992).

7. Lloyd G. Williams, “Assessment of Formal
Specifications for Safety-Critical Systems,”
Software Engineering Research, Boulder, CO
(February 1993).

8. Lloyd G. Williams, “Considerations for the Use of
Formal Methods in Software-Based Safety
Systems,” Software Engineering Research,
Boulder, CO (February 1993).

9. Lin Zucconi and Booker Thomas, “Testing
Existing Software for Safety-Related
Applications,” Lawrence Livermore National
Laboratory, Livermore, CA (January 1993).

1.3.  Report Organization

Section 2 contains background on several topics
relating to software reliability and software safety.
Terms are defined, life cycle models are discussed
briefly, and two classification schemes are presented.

Section 3 provides detail on the many life cycle
activities that can be done to improve reliability and
safety. Development activities are divided into eight

sets of activities: planning, requirements specification,
design specification, software implementation,
integration with hardware and instrumentation,
validation, installation and operations, and
maintenance. Each set of activities includes a number
of tasks that can be undertaken to enhance reliability
and safety. Because the report is oriented towards
assessment, the tasks are discussed in terms of the
documents they produce and the actions necessary to
create the document contents.

Section 4 discusses specific motivations,
recommendations, guidelines, and assessment
questions. The motivation sections describe particular
concerns of the assessor when examining the safety of
software in a reactor protection system.
Recommendations consist of actions the developer
should or should not do in order to address such
concerns. Guidelines consist of suggestions that are
considered good engineering practice when developing
software. Finally, the assessment sections consist of
lists of questions that the assessor may use to guide the
assessment of a particular aspect of the software
system.

From the viewpoint of the assessor, software
development consists of the organization that does the
development, the process used in the development, and
the products of that development. Each is subject to
analysis, assessment and judgment. This report
discusses all three aspects in various places within the
framework of the life cycle. Process and product are
the primary emphasis.

Following the main body of the report, the appendix
provides information on software fault tolerance
techniques and software reliability models. A
bibliography of information relating to software
reliability and safety is also included.
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2.  TERMINOLOGY

This section includes discussions of the basic
terminology used in the remainder of the report. The
section begins with a description of the terms used to
describe systems. Section 2.2 provides careful
definitions of the basic terminology for reliability and
safety. Section 2.3 contains brief descriptions of
several of the life cycle models commonly used in
software development, and defines the various
activities that must be carried out during any software
development project. Section 2.4 describes various
classification schemes for failures and faults, and
provides the terms used in these schemes. Finally,
Section 2.5 discusses the terms used to describe
software qualities that are used in following sections.

2.1.  Systems Terminology

The word system is used in many different ways in
computer science. The basic definition, given in IEEE
Standard 610.12, is “a collection of components
organized to accomplish a specific function or set of
functions.” In the context of a nuclear reactor, the word
could mean, depending on context, the society using
the reactor, the entire reactor itself, the portion devoted
to protection, the computer hardware and software
responsible for protection, or just the software.

In this report the term system, without modifiers, will
consistently refer to the complete application with
which the computer is directly concerned. Thus a
“system” should generally be understood as a “reactor
protection system.” When portions of the protection
system are meant, and the meaning isn’t clear from
context, a modifier will be used. Reference could be
made to the computer system (a portion of the
protection system), the software system (in the
computer system), the hardware system (in the
computer system) and so forth. In some cases, the term
“application system” is used to emphasize that the
entire reactor protection system is meant.

A computer system is itself composed of subsystems.
These include the computer hardware, the computer
software, operators who are using the computer
system, and the instruments to which the computer is
connected. The definition of instrument is taken from
ANSI/ISA Standard S5.1: “a device used directly or
indirectly to measure and/or control a variable. The
term includes primary elements, final control elements,
computing devices and electrical devices such as
annunciators, switches, and pushbuttons. The term

does not apply to parts that are internal components of
an instrument.”

Since this report is concerned with computer systems
in general, and software systems in particular,
instruments are restricted to those that interact with the
computer system. There are two types: sensors and
actuators. Sensors provide information to the software
on the state of the reactor, and actuators provide
commands to the rest of the reactor protection system
from the software.

2.2.  Software Reliability and Safety
Terminology
2.2.1.  Faults, Errors, and Failures

The words fault, error, and failure have a plethora of
definitions in the literature. This report uses the
following definitions, specialized to computer systems
(Laprie 1985; Randell 1978; Siewiorek 1982).

A fault is a deviation of the behavior of a computer
system from the authoritative specification of its
behavior. A hardware fault is a physical change in
hardware that causes the computer system to change its
behavior in an undesirable way. A software fault is a
mistake (also called a bug) in the code. A user fault
consists of a mistake by a person in carrying out some
procedure. An environmental fault is a deviation from
expected behavior of the world outside the computer
system; electric power interruption is an example. The
classification of faults is discussed further in
Subsection 2.4.1.

An error is an incorrect state of hardware, software, or
data resulting from a fault. An error is, therefore, that
part of the computer system state that is liable to lead
to failure. Upon occurrence, a fault creates a latent
error, which becomes effective when it is activated,
leading to a failure. If never activated, the latent error
never becomes effective and no failure occurs.

A failure is the external manifestation of an error. That
is, a failure is the external effect of the error, as seen
by a (human or physical device) user, or by another
program.

Some examples may clarify the differences among the
three terms. A fault may occur in a circuit (a wire
breaks) causing a bit in memory to always be a 1 (an
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error, since memory is part of the state) resulting in a
failed calculation.

A programmer's mistake is a fault; the consequence is
a latent error in the written software (erroneous
instruction). Upon activation of the module where the
error resides, the error becomes effective. If this
effective error causes a divide by zero, a failure occurs
and the program aborts.

A maintenance or operating manual writer's mistake is
a fault; the consequence is an error in the
corresponding manual, which will remain latent as
long as the directives are not acted upon.

The view summarized here enables fault pathology to
be made precise. The creation and action mechanisms
of faults, errors and failures may be summarized as
follows.

1. A fault creates one or more latent errors in the
computer system component where it occurs.
Physical faults can directly affect only the
physical layer components, whereas other types of
faults may affect any component.

2. There is always a time delay between the
occurrence of a fault and the occurrence of the
resulting latent error(s). This may be measured in
nanoseconds or years, depending on the situation.
Some faults may not cause errors at all; for
example, a bug in a portion of a program that is
never executed. It is convenient to consider this to
be an extreme case in which an infinite amount of
time elapses between fault and latent error.

3. The properties governing errors may be stated as
follows:

a. A latent error becomes effective once it is
activated.

b. An error may cycle between its latent and
effective states.

c. An effective error may, and in general does,
propagate from one component to another. By
propagating, an error creates other (new)
errors.

From these properties it may be deduced that an
effective error within a component may originate
from:

• Activation of a latent error within the same
component.

• An effective error propagating within the
same component or from another component.

4. A component failure occurs when an error affects
the service delivered (as a response to requests) by
the component. There is always a time delay
between the occurrence of the error and the
occurrence of the resulting failure. This may vary
from nanoseconds to infinity (if the failure never
actually occurs).

5. These properties apply to any component of the
computer system. In a hierarchical system, failures
at one level can usefully be thought of as faults by
the next higher level.

Most reliability, availability, and safety analysis and
modeling assume that each fault causes at most a
single failure. That is, failures are statistically
independent. This is not always true. A common-mode
failure occurs when multiple components of a
computer system fail due to a single fault. If common
mode failures do occur, an analysis that assumes that
they do not will be excessively optimistic. There are a
number of reasons for common mode failures (Dhillon
1983):

• Environmental causes, such as dirt, temperature,
moisture, and vibrations.

• Equipment failure that results from an unexpected
external event, such as fire, flood, earthquake, or
tornadoes.

• Design deficiencies, where some failures were not
anticipated during design. An example is multiple
telephone circuits routed through a single
equipment box. Software design errors, where
identical software is being run on multiple
computers, is of particular concern in this report.

• Operational errors, due to factors such as improper
maintenance procedures, carelessness, or improper
calibration of equipment.

• Multiple items purchased from the same vendor,
where all of the items have the same
manufacturing defect.

• Common power supply used for redundant units.

• Functional deficiencies, such as misunderstanding
of process variable behavior, inadequately
designed protective actions, or inappropriate
instrumentation.
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2.2.2.  Reliability and Safety Measures

Reliability and safety measurements are inherently
statistical, so the fundamental quantities are defined
statistically. The four basic terms are reliability,
availability, maintainability, and safety. These and
other related terms are defined in the following text.
Note that the final three definitions are qualitative, not
quantitative (Siewiorek 1982; Smith 1972). Most of
these definitions apply to arbitrary systems. The
exception is safety; since this concept is concerned
with the consequences of failure, rather than the simple
fact of failure, the definition applies only to a system
that can have major impacts on people or equipment.
More specifically, safety applies to reactors, not to
components of a reactor.

• The reliability, R(t) , of a system is the
conditional probability that the system has
survived the interval [0, t], given that it was
operating at time 0. Reliability is often given in
terms of the failure rate (also referred to as the
hazard rate ), λ (t), or the mean time to failure,
mttf . If the failure rate is constant,
mttf =1 / λ . Reliability is a measure of the
success with which the system conforms to some
authoritative specification of its behavior, and
cannot be measured without such a specification.

• The availability, A(t) , of a system is the
probability that the system is operational at the
instant of time t. For nonrepairable systems,
availability and reliability are equal. For repairable
systems, they are not. As a general rule,

0 ≤ R(t) ≤ A(t) ≤ 1.

• The maintainability, M(t), of a system is the
conditional probability that the system will be
restored to operational effectiveness by time t,
given that it was not functioning at time 0.
Maintainability is often given in terms of the
repair rate, µ(t) , or mean time to repair, mttr. If
the repair rate is constant, mttr =1 / µ  .

• The safety, S(t), of a system is the conditional
probability that the system has survived the
interval [0, t] without an accident, given that it
was operating without catastrophic failure at time
0.

• The dependability of a system is a measure of its
ability to commence and complete a mission
without failure. It is therefore a function of both
reliability and maintainability. It can be thought of
as the quality of the system that permits the user to
rely on it for service.

• The capability of a system is a measure of its
ability to satisfy the user's requirements.

• System effectiveness is the product of capability,
availability and dependability. System cost
effectiveness is the quotient of system
effectiveness and cost.

2.2.3.  Safety Terminology

Safety engineering has special terminology of its own.
The following definitions, based on those developed
by the IEEE Draft Standard 1228, are used in this
report. They are reasonably standard definitions, but
specialized to computer software in a few places.

• An accident is an unplanned event or series of
events that result in death, injury, illness,
environmental damage, or damage to or loss of
equipment or property. (The word mishap is
sometimes used to mean an accident, financial loss
or public relations loss.)

• A system hazard is an application system
condition that is a prerequisite to an accident. That
is, the system states can be divided into two sets.
No state in the first set (of nonhazardous states )
can directly cause an accident, while accidents
may result from any state in the second set (of
hazardous states ). Note that a system can be in a
hazardous state without an accident occurring—it
is the potential for causing an accident that creates
the hazard, not necessarily the actuality.

• The term risk is used to designate a measure that
combines the likelihood that a system hazard will
occur, the likelihood that the hazard will cause an
accident and the severity of the worst plausible
accident. The simplest measure is to simply
multiply the probability that a hazard occurs, the
probability that a hazard will cause an accident
(given that the hazard occurs), and the worst-case
severity of the accident.

• Safety-critical software is software whose
inadvertent response to stimuli, failure to respond
when required, response out-of-sequence, or
response in unplanned combination with others
can result in an accident. This includes software
whose operation or failure to operate can lead to a
hazardous state, software intended to recover from
hazardous states, and software intended to
mitigate the severity of, or recover from, an
accident.

• The term safety is used to mean the extent to
which a system is free from system hazard. This is
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a less precise definition than that given in Section
2.2.2, which is generally preferred in this report.

It is also useful to consider the word “critical” when
used to describe systems. A critical system is a system
whose failure may have very unpleasant consequences
(mishaps). The results of failure may affect the
developers of the system, its direct users, their
customers or the general public. The consequences
may involve loss of life or property, financial loss,
legal liability (such as jail), regulatory threats, or even
the loss of good will (if that is extremely important).
The term safety critical refers to a system whose
failure could cause an accident.

A good brief discussion of accidents is found in
Leveson 1991:

Despite the usual oversimplification of the
causes of particular accidents (“human
error” is often the identified culprit despite
the all-encompassing nature and relative
uselessness of such a categorization),
accidents are caused almost without
exception by multiple factors, and the relative
contribution of each is usually not clear. An
accident may be thought of as a set of events
combining together in random fashion or,
alternatively, as a dynamic mechanism that
begins with the activation of a hazard and
flows through the system as a series of
sequential and concurrent events in a logical
sequence until the system is out of control and
a loss is produced (the “domino theory”).
Either way, major incidents often have more
than one single cause, and it is usually
difficult to place blame on any one event or
component of the system. The high frequency
of complex, multifactorial accidents may arise
from the fact that the simpler potentials have
been anticipated and handled. But the very
complexity of events leading to an accident
implies that there may be many opportunities
to intervene or interrupt the sequence.

A second characteristic of accidents is that
they often involve problems in subsystem
interfaces. It appears to be easier to deal with
failures of components than failures in the
interfaces between components. This should
not be a surprise to software engineers,
consider the large number of operational
software faults that can be traced back to
requirements problems. The software

requirements are the specific representation
of the interface between the software and the
processes or devices being controlled.

A third important characteristic claimed for
accidents is that they are intimately
intertwined with complexity and coupling.
Perrow has argued that accidents are
“normal” in complex and tightly coupled
systems. Unless great care is taken, the
addition of computers to control these systems
is likely to increase both complexity and
coupling, which will increase the potential for
accidents.

2.3.  Life Cycle Models

Many different software life cycles have been
proposed. These have different motivations, strengths,
and weaknesses. The life cycle models generally
require the same types of tasks to be carried out; they
differ in the ordering of these tasks in time. No
particular life cycle is assumed here. There is an
assumption that the activities that occur during the
developer’s life cycle yield the products indicated in
Figure 2-1. Each of the life cycle activities produces
one or more products, mostly documents, that can be
assessed. The development process itself is subject to
assessment.

The ultimate result of software development, as
considered in this report, is a suite of computer
programs that run on computers and control the reactor
protection system. These programs will have
characteristics deemed desirable by the developer or
customer, such as reliability, performance, usability,
and functionality. This report is only concerned with
reliability and safety; however, that concern does “spill
over” into other qualities.

The development model used here suggests one or
more audits of the products of each set of life cycle
activities. The number of audits depends, among other
things, on the specific life cycle model used by the
developer. The audit will assess the work done that
relates to the set of activities being audited. Many
reliability, performance, and safety problems can be
resolved only by careful design of the software
product, so must be addressed early in the life cycle,
no matter which life cycle is used. Any errors or
oversights can require difficult and expensive retrofits,
so are best found as early as possible. Consequently, an
incremental audit process is believed to be more cost
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effective than a single audit at the end of the
development process. In this way, problems can be
detected early in the life cycle and corrected before
large amounts of resources have been wasted.

Three of the many life cycle models are described
briefly in subsections 2.3.1. through 2.3.3. No
particular life cycle model is advocated. Instead, a
model should be chosen to fit the style of the
development organization and the nature of the
problem being solved.

2.3.1.  Waterfall Model

The classic waterfall model of software development
assumes that each phase of the life cycle can be
completed before the next phase is begun (Pressman
1987). This is illustrated in Figure 2-2. The actual
phases of the waterfall model differ among the various
authors who discuss the model; the figure shows
phases appropriate to reactor protection systems. Note
that the model permits the developer to return to
previous phases. However, this is considered to be an
exceptional condition to the normal forward flow,
included to permit errors in previous stages to be
corrected. For example, if a requirements error is
discovered during the implementation phase, the
developer is expected to halt work, return to the
requirements phase, fix the problem, change the design
accordingly, and then restart the implementation from
the revised design. In practice, one only stops the
implementation affected by the newly discovered
requirement.

The waterfall model has been severely criticized as not
being realistic to many software development
situations, and this is frequently justified. It remains an
excellent model for those situations where the
requirements are known and stable before development
begins, and where little change to requirements is
anticipated.

2.3.2.  Phased Implementation Model

This model assumes that the development will take
place as a sequence of versions, with a release after
each version is completed. Each version has its own
life cycle model. If new requirements are generated
during the development of a version, they will
generally be delayed until the next version, so a
waterfall model may be appropriate to each version.
(Marketing pressures may modify such delays.)

This model is appropriate to commercial products that
are evolving over long periods of time, or for which

external requirements change slowly. Operating
systems and language compilers are examples.

2.3.3.  Spiral Model

The spiral model was developed at TRW (Boehm
1988) in an attempt to solve some of the perceived
difficulties with earlier models. This model assumes
that software development can be modeled as a
sequence of activities, as shown in Figure 2-3. Each
time around the spiral (phase), the product is
developed to a more complete degree. Four broad steps
are required:

1. Determine the objectives for the phase. Consider
alternatives to meeting the objectives.

2. Evaluate the alternatives. Identify risks to
completing the phase, and perform a risk analysis.
Make a decision to proceed or stop.

3. Develop the product for the particular phase.

4. Plan for the next phase.

The products for each phase may match those of the
previous models. In such circumstances, the first loop
around the spiral results in a concept of operations; the
next, a requirements specification; the next, a design;
and so forth. Alternately, each loop may contain a
complete development cycle for one phase of the
product; here, the spiral model looks somewhat like the
phased implementation model. Other possibilities
exist.

The spiral model is particularly appropriate when
considerable financial, schedule, or technical risk is
involved in the product development. This is because
an explicit risk analysis is carried out as part of each
phase, with an explicit decision to continue or stop.

2.4.  Fault and Failure Classification
Schemes

Faults and failures can be classified in several different
ways. Those that are considered useful in safety-
related applications are described briefly here. Faults
are classified by persistence and by the source of the
fault. There is some interaction between these, in the
sense that not all persistence classes may occur for all
sources. Table 2-1 provides the interrelationship.

Failures are classified by mode, scope, and the effect
on safety. These classification schemes consider the
effect of a failure, both on the environment within
which the computer system operates, and on the
components of the system.
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Table 2-1.  Persistence Classes and Fault Sources

Design Operational Transient

Hardware component X X X

Software component X

Input data X X

Permanent state X X

Temporary state X X

Topological X

Operator X X X

User X X X

Environmental X X X

Unknown X

2.4.1.  Fault Classifications

Faults and failures can be classified by several more-
or-less orthogonal measures. This is important,
because the classification may affect the depth and
method of analysis and problem resolution, as well as
the preferred modeling technique.

Faults can be classified by the persistence and source
of the fault. This is described in the two subsections of
this section. Terms defined in each subsection are used
in other subsections.

2.4.1.1.  Fault Persistence

Any fault falls into one of the following three classes
(Kopetz 1985):

• A design fault is a fault that can be corrected by
redesign. Most software and topological faults fall
into this class, but relatively few hardware faults
do. Design faults are sometimes called removable
faults, and are generally modeled by reliability
growth models (See Appendix A.3.). One design
fault can cause many errors and failures before it
is diagnosed and corrected. Design faults are

usually quite expensive to correct if they are not
discovered until the product is in operation.

• An operational fault is a fault where some portion
of the computer system breaks and must be
repaired in order to return the system to a state that
meets the design specifications. Examples include
electronic and mechanical faults, database
corruption, and some operator faults. Operational
faults are sometimes called non-removable faults.
When calculating fault rates for operational faults,
it is generally assumed that the entity that has
failed is in the steady-state portion of its life, so
operational fault rates are constant. As with design
faults, an operational fault may cause many errors
before being identified and repaired.

• A transient fault is a fault that does cause a
computer system failure, but is no longer present
when the system is restarted. Frequently the basic
cause of a transient fault cannot be determined.
Redesign or repair has no effect in this case,
although redesign can affect the frequency of
transient faults. Examples include power supply
noise and operating system timing errors. While
an underlying problem may actually exist, no
action is taken to correct it (or the fault would fall
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into one of the other classes). In some computer
systems, 50–80% of all faults are transient. The
frequency of operating system faults, for example,
is typically dependent on system load and
composition.

The class of transient faults actually includes two
different types of event; they are grouped together here
since it is generally impossible to distinguish between
them. Some events are truly transient; a classic (though
speculative) example is a cosmic ray that flips a single
memory bit. The other type is an event that really is a
design or operational fault, but this is not known when
it occurs. That is, it looks like the first type of transient
event. If the cause is never discovered, no real harm is
done in placing it in this class. However, if the cause is
eventually determined, the event should be classified
properly; this may well require recalculation of
reliability measures.

A computer system is constructed according to some
specification. If the system fails, but still meets the
specification, then the specification was wrong. This is
a design fault. If, however, the system ceases to meet
the specification and fails, then the underlying fault is
an operational fault. A broken wire is an example. If
the specification is correct, but the system fails
momentarily and then recovers on its own, the fault is
transient.

Many electronic systems, and some mechanical
systems, have a three stage life cycle with respect to
fault persistence. When the device is first constructed,
it will have a fairly high fault rate due to undetected
design faults and “burn-in” operational faults. This
fault rate decreases for a period of time, after that the
device enters its normal life period. During this
(hopefully quite long) period, the failure rate is
approximately constant, and is due primarily to
operational and transient faults, with perhaps a few
remaining design faults. Eventually the device begins
to wear out, and enters the terminal stage of its life.
Here the fault rate increases rapidly as the probability
of an operational fault goes up at an increasing rate. It
should be noted that in many cases the end of the
product’s useful life is defined by this increase in the
fault rate.

The behavior described in the last paragraph results in
a failure rate curve termed the “bathtub” curve. It was
originally designed to model electronic failure rates.
There is a somewhat analogous situation for software.
When a software product is first released, there may be
many failures in the field for some period of time. As

the underlying faults are corrected and new releases
are sent to the customers, the failure rate should
decrease until a more-or-less steady state is reached.
Over time, the maintenance and enhancement process
may perturb the software structure sufficiently that
new faults are introduced faster than old ones are
removed. The failure rate may then go up, and a
complete redesign is in order.

While this behavior looks similar to that described for
electronic systems, the causal factors are quite
different. One should be very careful when attempting
to extrapolate from one to the other.

2.4.1.2.  Source of Faults in Computer Systems

Fault sources can be classified into a number of
categories; ten are given here. For each one, the source
is described briefly, and the types of persistence that
are possible is discussed.

• A hardware fault is a fault in a hardware
component, and can be of any of the three
persistence types. Application systems rarely
encounter hardware design faults. Transient
hardware faults are very frequent in some systems.

• A software fault is a bug in a program. In theory,
all such are design faults. Dhillon (1987) classifies
software faults into the following eight categories:

— Logic faults

— Interface faults

— Data definition faults

— Database faults

— Input/output faults

— Computational faults

— Data handling faults

— Miscellaneous faults

• An input data fault is a mistake in the input. It
could be a design fault (connecting a sensor to the
wrong device is an example) or an operational
fault (if a user supplies the wrong data).

• A permanent state fault is a fault in state data that
is recorded on non-volatile storage media (such as
disk). Both design and operational faults are
possible. The use of a data structure definition that
does not accurately reflect the relationships among
the data items is an example of a design fault. The
failure of a program might cause an erroneous
value to be stored in a file, causing an operational
fault in the file.
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• A temporary state fault is a fault in state data that
is recorded on volatile media (such as main
memory). Both design and operational faults are
possible. The primary reason to separate this from
permanent state faults is to allow for the
possibility of different failure rates.

• A topological fault is a fault caused by a mistake
in computer system architecture, not with the
component parts. All such faults are design faults.
Notice that the failure of a cable is considered a
hardware operational fault, not a topological fault.

• An operator fault is a mistake by the operator.
Any of the three types are possible. A design fault
occurs if the instructions provided to the operator
are incorrect; this is sometimes called a procedure
fault. An operational fault would occur if the
instructions are correct, but the operator
misunderstands and doesn't follow them. A
transient fault would occur if the operator is
attempting to follow the instructions, but makes an
unintended mistake. Hitting the wrong key on a
keyboard is an example. (One goal of display
screen design is to reduce the probability of
transient operator errors.)

• A user fault differs from an operator fault only
because of the different type of person involved;
operators and users can be expected to have
different fault rates.

• An environmental fault is a fault that occurs
outside the boundary of the computer system, but
that affects the system. Any of the three types is
possible. Failure to provide an uninterruptible
power supply (UPS) would be a design fault,
while failure of the UPS would be an operational
fault. A voltage spike on a power line is an
example of an environmentally induced transient
fault.

• An unknown fault is any fault whose source class
is never identified. Unfortunately, in some
computer systems many faults occur whose source
cannot be identified. All such faults are transient
(more or less by definition), and this category may
well include a plurality of system faults. Another
problem is that the underlying problem may be
identified at a later time (possibly months later),
so there is a certain impermanence about this
category. It generally happens that some
information is available about the source of the
fault, but not sufficient information to allow the
source to be completely identified. For example, it

might only be known that there is a fault in a
communication system.

Table 2-1 shows which persistence classes may occur
for each of the ten fault sources.

2.4.2.  Failure Classifications

Three aspects of classifying failures are given below;
there are others. These are particularly relevant to later
discussion in this report.

2.4.2.1.  Failure Modes

Different failure modes can have different effects on a
computer system. The following definitions apply
(Smith 1972).

• A sudden failure is a failure that could not be
anticipated by prior examination. That is, the
failure is unexpected.

• A gradual failure is a failure that could be
anticipated by prior examination. That is, the
system goes into a period of degraded operation
before the failure actually occurs.

• A partial failure is a failure resulting in deviations
in characteristics beyond specified limits but not
such as to cause complete lack of the required
function.

• A complete failure is a failure resulting in
deviations in characteristics beyond specified
limits such as to cause complete lack of the
required function. The limits referred to in this
category are special limits specified for this
purpose.

• A catastrophic failure is a failure that is both
sudden and complete.

• A degradation failure is a failure that is both
gradual and partial.

2.4.2.2.  The Scope of Failures

Failures can be assigned to one of three classes, depending
on the scope of their effects (Anderson 1983).

• A failure is internal if it can be adequately
handled by the device or process in which the
failure is detected.

• A failure is limited if it is not internal, but if the
effects are limited to that device or process.

• A failure is pervasive if it results in failures of
other devices or processes.
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2.4.2.3.  The Effects of Failures on Safety

Finally, it is possible to classify application systems by
the effect of failures on safety.

• A system is intrinsically safe if the system has no
hazardous states.

• A system is termed fail safe if a hazardous state
may be entered, but the system will prevent an
accident from resulting from the hazard. An
example would be a facility in a reactor that forces
a controlled shutdown in case a hazardous state is
entered, so that no radiation escapes.

• A system controls accidents if a hazardous state
may be entered and an accident may occur, but the
system will mitigate the consequences of the
accident. An example is the containment shell of a
reactor, designed to preclude a radiation release
into the environment if an accident did occur.

• A system gives warning of hazards if a failure
may result in a hazardous state, but the system
issues a warning that allows trained personnel to
apply procedures outside the system to recover
from the hazard or mitigate the accident. For
example, a reactor computer protection system
might notify the operator that a hazardous state
has been entered, permitting the operator to “hit
the panic button” and force a shutdown in such a
way that the computer system is not involved.

• Finally, a system is fail dangerous, or creates an
uncontrolled hazard, if system failure can cause an
uncontrolled accident.

2.5.  Software Qualities

A large number of factors have been identified by
various theoreticians and practitioners that affect the
quality of software. Many of these are very difficult to
quantify. The discussion here is based on IEEE 610.12,
Evans 1987, Pressman 1987, and Vincent 1988. The
latter two references based their own discussion on
McCall 1977. The discussion concentrates on defining
those terms that appear important to the design of
reactor protection computer systems. Quotations in this
section come from the references listed above.

Access Control. The term “access control” relates to
“those attributes of the software that provide for
control of the access to software and data.” In a
reactor protection system, this refers to the ability
of the utility to prevent unauthorized changes to
either software or data within the computer

system, incorrect input signals being sent to the
computer system by intervention of a human
agent, incorrect commands from the operator, and
any other forms of tampering. Access control
should consider both inadvertent and malicious
penetration.

Accuracy. Accuracy refers to “those attributes of the
software that provide the required precision in
calculations and outputs.” In some situations, this
can require a careful error analysis of numerical
algorithms.

Auditability. Auditability refers to the “ease with
which conformance to standards can be checked.”
The careful development of project plans,
adherence to those plans, and proper record
keeping can help make audits easier, more
thorough and less intrusive. Sections 3 and 4
discuss this topic in great depth.

Completeness. Completeness properties are “those
attributes of the software that provide full
implementation of the functions required.” A
software design is complete if all requirements are
fulfilled in the design. A software implementation
is complete if the code fully implements the
design.

Consistency. Consistency is defined as “the degree of
uniformity, standardization and freedom from
contradictions among the documents or parts of a
system or component.” Standardized error
handling is an example of consistency.
Requirements are consistent if they do not require
the system to carry out some function, and under
the same conditions to carry out its negation. An
inconsistent design might cause the system to send
incompatible signals to one or more actuators,
causing the protection system to attempt
contradictory actions. An example would be
starting a pump but not opening the intake value.

Correctness. Correctness refers to the “extent to
which a program satisfies its specifications and
fulfills the user’s mission objectives.” This is a
broader definition than that given for
completeness. It is worth noting that some of the
documents referenced at the beginning of the
section essentially equate correctness with
completeness, while others distinguish between
them. The IEEE Standard 610.12 gives both forms
of definition.

Expandability. Expandability attributes are “those
attributes of the software that provide for
expansion of data storage requirements or
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computational functions.” The word
“extendibility” is sometimes used as a synonym.

Generality. Generality is “the degree to which a
system or component performs a broad range of
functions.” This is not necessarily a desirable
attribute of a reactor protection system if the
generality encompasses functionality beyond
simply protecting the reactor.

Software Instrumentation. Instrumentation refers to
“those attributes of the software that provide for
measurement of usage or identification of errors.”
A well-instrumented system can monitor its own
operation, and detect errors in that operation.
Software instrumentation can be used to monitor
the hardware operation as well as its own
operation. A hardware device such as a watch-dog
timer can be used to help monitor the software
operation. If instrumentation is required for a
computer system, it may have a considerable
effect on the system design, so must be considered
as part of that design.

Modularity. Modularity attributes are “those attributes
of the software that provide a structure of highly
independent modules.” To achieve modularity, the
protection computer system should be divided into
discrete hardware and software components in
such a way that a change to one component has
minimal impact on the remaining modules.
Modularity is measured by cohesion and coupling
(Yourdon 1979).

Operability. Operability refers to “those attributes of
the software that determine operation and
procedures concerned with the operation of the
software.” This quality is concerned with the man-
machine interface, and measures the ease with
which the operators can use the system. This is
particularly a concern during off-normal and
emergency conditions when confusion may be
high and mistakes may be unfortunate.

Robustness. Robustness refers to “the degree to which
a system or component can function correctly in
the presence of invalid inputs or stressful
environmental conditions.” This quality is
sometimes referred to as “error tolerance” and
may be implemented by fault tolerance or design
diversity.

Simplicity. Simplicity attributes are “those attributes
that provide implementation of functions in the
most understandable manner.” It can be thought of
as the absence of complexity. This is one of the
more important design qualities for a reactor
computer protection system, and is quite difficult
to quantify. See Preckshot 1992 for additional
information on complexity and scalability.

A particularly important aspect of complexity is
the distinction between functional complexity and
structural complexity. The former refers to a
system that attempts to carry out many disparate
functions, and is controlled by limiting the goals
of the system. The latter refers to the method of
carrying out the functions, and may be controlled
by redesigning the system to carry out the same
functions in a simpler way.

Testability. Testability refers to “the degree to which a
system or component facilitates the establishment
of test criteria and the performance of tests to
determine whether those criteria have been met.”

Traceability. Traceability attributes are “those
attributes of the software that provide a thread
from the requirements to the implementation with
respect to the specific development and
operational environment.”
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3.  LIFE CYCLE SOFTWARE RELIABILITY
AND SAFETY ACTIVITIES

Much has been written about software engineering and
how a well-structured development life cycle can help
in the production of correct maintainable software
systems. Many standard software engineering activities
should be performed for any software project, so are
not discussed in this report. Instead, the report
concentrates on the additional activities required for a
software project in which safety is a prime concern.
Refer to a general text, such as Macro 1990 or
Pressman 1987, for general information on software
engineering.

Any software development project can be discussed
from a number of different viewpoints. Examples
include the customer, the user, the developer, the
project manager, the general manager, and the
assessor. The viewpoint that is presumed will have a
considerable effect on the topics discussed, and
particularly on the emphasis placed on different
aspects of those topics. The interest here is the
viewpoint of the assessor. This is a person (or group of
people) who evaluates both the development process
and the products of that process for assurance that they
meet some externally-imposed standard. In this report,
those standards will relate to the reliability of the
software products and the safety of the application in
which the software is embedded. The assessor may be
a person in the development organization charged with
the duty of assuring reliability and safety, a person in
an independent auditing organization, or an employee
of a regulatory agency. The difference among these
assessors should be the reporting paths, not the
technical activities that are carried out. Consequently
no distinction is made here among the different types
of assessor.

Since this report is written from the viewpoint of the
assessor, the production of documents is emphasized in
this report. The documents provide the evidence that
required activities have actually taken place. There is
some danger that the software developer will
concentrate on the creation of the documents rather
than the creation of safe reliable software. The assessor
must be constantly on guard for this activity. The
software runs the protection system, not the
documents. There is heavy emphasis below on
planning: creating and following the plans that are
necessary to the development of software where safety
is a particular concern.

The documents that an assessor should expect to have
available, and their contents, is the subject of this
section of the report. The process of assessing these
documents is discussed in Section 4.

3.1.  Planning Activities

Fundamental to the effective management of any
engineering project is the planning that goes into the
project. This is especially true where extreme
reliability and safety are of concern. While there are
general issues of avoiding cost and schedule overruns,
the particular concern here is safety. Unless a
management plan exists, and is followed, the
probability is high that some safety concerns will be
overlooked at some point in the project lifetime, or
lack of time or money near the end of the development
period will cause safety concerns to be ignored, or
testing will be abridged. It should be noted that the
time/money/safety tradeoff is a very difficult
management issue requiring very wise judgment. No
project manager should be allowed to claim “safety” as
an excuse for unconscionable cost or schedule
overruns. On the other hand, the project manager
should also not be allowed to compromise safety in an
effort to meet totally artificial schedule and budget
constraints.

For a computer-based safety system, a number of
documents will result from the planning activity. These
are discussed in this section, insofar as safety is an
issue. For example, a software management plan will
generally involve non-safety aspects of the
development project, which go beyond the discussion
in Section 3.1.1.

Software project planning cannot take place in
isolation from the rest of the reactor development. It is
assumed that a number of documents are available to
the software project team. At minimum, the following
must exist:

• Hazards analysis. This identifies hazardous
reactor system states, sequences of actions that can
cause the reactor to enter a hazardous state,
sequences of actions intended to return the reactor
from a hazardous state to a nonhazardous state,
and actions intended to mitigate the consequences
of an accident.
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• High level reactor system design. This identifies
those functions that will be performed by the
protection system, and includes a specification of
those safety-related actions that will be required of
the software in order to prevent the reactor from
entering a hazardous state, move the reactor from
a hazardous state to a non-hazardous state, or
mitigate the consequences of an accident.

• Interfaces between the protection computer
system and the rest of the reactor protection
system. That is, what signals must be obtained
from sensors and what signals must be provided to

actuators by the computer system. Interfaces also
include display devices intended for man-machine
interaction.

Planning a software development project can be a
complex process involving a hierarchy of activities.
The entire process is beyond the scope of this report.
Figure 3-1, reprinted from Evans 1983 (copyright 1983
by Michael Evans, Pamela Piazza, and James Dolkas.
Reprinted by permission of John Wiley & Sons), gives
a hint as to the activities involved. Planning is
discussed in detail in Pressman 1987.
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Figure 3-1.  Software Planning Activities
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The result of the planning activity will be a set of
documents that will be used to oversee the
development project. These may be packaged as
separate documents, combined into a fewer number of
documents, or combined with similar documents used
by the larger reactor project. For example, the
developer might choose to include the software V&V
plan in the software project management plan, or to
include the software configuration management plan in
a project-wide configuration management plan. Such
packaging concerns are beyond the scope of this
report. Since some method is necessary in order to
discuss documents, the report assumes that separate
documents will exist. The documents resulting from
planning include the following minimum set;
additional documents may be required by the
development organization as part of their standard
business procedures, or by the assessor due to the
nature of the particular project.

• Software Project Management Plan

• Software Quality Assurance Plan

• Software Configuration Management Plan

• Software Verification and Validation Plan

• Software Safety Plan

• Software Development Plan

• Software Integration Plan

• Software Installation Plan

• Software Maintenance Plan

• Software Training Plan

• Software Operations Plan

The actual time at which these documents will be
produced depends on the life cycle used by the
software developer. The Software Project Management
Plan will always need to be done early in the life cycle,
since the entire management effort is dependent on it.
However, documents such as the Software Operations
Plan might be delayed until the software system is
ready to install.

3.1.1.  Software Project Management Plan

The software project management plan (SPMP) is the
basic governing document for the entire development
effort. Project oversight, control, reporting, review, and
assessment are all carried out within the scope of the
SPMP.

One method of organizing the SPMP is to use IEEE
Standard 1058; this is done here. Other methods are

possible, provided that the topics discussed below are
addressed. The plan contents can be roughly divided
into several categories: introduction and overview,
project organization, managerial processes, technical
processes, and budgets and schedules. A sample table
of contents, based on IEEE 1058, is shown in Figure 3-
2. Those aspects of the plan that directly affect safety
are discussed next.

1.  Introduction

1.1.  Project Overview

1.2.  Project Deliverables

1.3.  Evolution of the SPMP

1.4.  Reference Materials

1.5.  Definitions and Acronyms

2.  Project Organization

2.1.  Process Model

2.2.  Organizational Structure

2.3.  Organizational Boundaries and Interfaces

2.4.  Project Responsibilities

3.  Managerial Process

3.1.  Management Objectives and Priorities

3.2.  Assumptions, Dependencies and Constraints

3.3.  Risk Management

3.4.  Monitoring and Controlling Mechanisms

3.5.  Staffing Plan

4.  Technical Process

4.1.  Methods, Tools and Techniques

4.2.  Software Documentation

4.3.  Project Support Functions

5.  Work Packages, Schedule and Budget

5.1.  Work Packages

5.2.  Dependencies

5.3.  Resource Requirements

5.4.  Budget and Resource Allocation

5.5.  Schedule

6.  Additional Components

Index

Appendices

Figure 3-2.  Outline of a Software Project
Management Plan
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A combination of text and graphics may be used to
create and document the SPMP. PERT charts,
organization charts, matrix diagrams or other formats
are frequently useful.

3.1.1.1.  Project Organization

This portion of the SPMP addresses organizational
issues; specifically, the process model, organizational
structure, boundaries and interfaces, and project
responsibilities. The following items should be
discussed in this portion of the plan.

• Process Model. Define the relationships among
major project functions and activities. The
following specifications must be provided:

— Timing of major milestones.

— Project baselines.

— Timing of project reviews and audits.

— Work products of the project.

— Project deliverables.

• Organization Structure. Describe the internal
management structure of the project.

— Lines of authority.

— Responsibility for the various aspects of the
project.

— Lines of communication within the project.

— The means by which the SPMP will be
updated if the project organization changes.
Note that the SPMP should be under
configuration control; see Section 3.1.3.

• Organization Boundaries. Describe the
administrative and managerial boundaries, and
interfaces across those boundaries, between the
project and the following external entities.

— The parent organization.

— The customer organization.

— Any subcontractor organizations.

— The regulatory and auditor organizations.

— Support organizations, including quality
assurance, verification and validation, and
configuration management.

• Project responsibilities. State the nature of each
major project function and activity, and identify
by name the individuals who are responsible for

them. Give the method by which these names can
be changed during the life of the project.

3.1.1.2.  Project Management Procedures

This section of the SPMP will describe the
management procedures that will be followed during
the project development life cycle. Topics that can
affect safety are listed here; the development
organization will normally include additional
information in order to completely describe the
management procedures. The following aspects of the
SPMP fall into the category of management
procedures.

• Project Priorities. Describe the priorities for
management activities during the project. Topics
include:

— Relative priorities among safety requirements,
functional requirements, schedule and budget.

— Frequency and mechanisms for reporting.

• Project Assumptions, Dependencies and
Constraints. State:

— The assumptions upon which the project is
based.

— The external events upon which the project is
dependent.

— The constraints under which the project will
be conducted.

• Risk Management. Identify and assess the risk
factors associated with the project. All of the items
listed here may have an impact on safety; this
impact must be described here, with a method for
managing that risk.

— Financial risks.

— Schedule risks.

— Contractual risks.

— Technology change risks.

— Size and complexity risks.

— Scale-up risks.

• Monitoring and Controlling Methods. Describe
reporting requirements, report formats,
information flows, and review and audit
mechanisms.

— Internal reporting—within the development
organization.
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— External reporting—to auditors and
regulators.

• Staffing. Specify the numbers and types of
personnel required in order to achieve a reliable
software system that meets safety requirements.

— Skill levels required.

— Start times and duration of needs.

— Training requirements.

3.1.1.3.  Project Technical Procedures

This section of the SPMP will describe management
aspects of the technical procedures that will be
followed during the project development life cycle.
Topics that can affect safety are listed here; the
development organization will normally include
additional information in order to completely describe
the technical procedures. In some cases, these
procedures may be documented in other documents,
and this portion of the SPMP will merely reference
those documents. In particular, the technical aspects of
the development effort are described in the Software
Development Plan; see Section 3.1.5. The difference is
one of emphasis: the SPMP is directed at the project
management personnel, while the Software
Development Plan is directed at the project technical
personnel. The following topics should be discussed.

• Methods, Tools, and Techniques. Specify all of
the methods, tools, and techniques that will be
used to develop the product. The following list is
meant to be indicative.

— Computing systems to be used for software
development.

— Development methods.

— Programming languages.

— Computer-assisted software engineering
(CASE) tools.

— Technical standards to be followed.

— Company development procedures.

— Company programming style.

• Software Documentation. Describe all of the
technical documentation that will be required for
the project. The documents listed below are
considered mandatory; additional documents may
be included at the option of the development
organization or auditing organization. Additional
documents may be required by other plans. In

particular, the Verification and Validation Plan
and the Configuration Management Plan will
require documents that describe assessments done
for each life cycle phase. Discuss milestones,
baselines, reviews, and sign-offs for each
document.

— Software Development Plan.

— Software Requirements Specification.

— Requirements Safety Analysis.

— Hardware/Software Architecture.

— Software Design Specification.

— Design Safety Analysis.

— Unit Development Folders.

— Code Safety Analysis.

— System Build Specification.

— Integration Safety Analysis.

— Validation Safety Analysis.

— Installation Procedures.

— Operations Manuals.

— Installation Configuration Tables.

— Installation Safety Analysis.

— Change Safety Analysis.

• Project Support Functions. Describe all technical
support functions for the project. In many cases,
these will have their own plans, and the SPMP
may simply refer to those. Describe (either here or
in the supporting plans) responsibilities, resource
requirements, schedules, and budgets for each
supporting activity. Support functions include:

— Software quality assurance.

— Software configuration management.

— Software verification and validation
(including testing).

— Software safety management.

— Software reviews and audits.

3.1.2 Software Quality Assurance Plan

Quality assurance (QA) is defined by IEEE as “a
planned and systematic pattern of all actions necessary
to provide adequate confidence that the item or product
conforms to established technical requirements.”
Software quality assurance (SQA) is the portion of
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general quality assurance that applies to a software
product. The SQA plan describes how the quality of
the software will be assured by the development
organization. It may exist as a separate document, or
be part of the general reactor QA plan. Here, the first is
assumed to provide specificity to the discussion.

There will be considerable overlap between the SQA
Plan and the other project plans. The SQA Plan will
generally reference such documents, and limit the
discussion in the SQA Plan itself to matters of
particular concern to SQA activities. For example, the
section on code control may reference the Software
Configuration Management Plan, and describe the
methods by which the SQA organization will ensure
that this plan is followed.

The description here is based on ANSI/IEEE standard
730.1, Software Quality Assurance Plans. The use of
this standard is discussed in a draft IEEE guide, 730.2,
Guide for Software Assurance Planning. A sample
table of contents for a SQA plan is shown in Figure 3-
3. It is based on the IEEE standard. The developer
need not follow this sample, provided that the
requirements listed below are included in his own plan.
Concerns that are unlikely to directly affect safety are
not discussed in this list of requirements.

1. SQA Organization. Describe the organizational
structure of the SQA effort. Major topics to
discuss include:

— Major SQA organizational elements and
linkages between them.

— Organizational independence or dependence
of the SQA organization from the
development organization.

2. SQA Management Tasks. Describe the major
tasks that will be required for the SQA activity.

— Describe that portion of the software life
cycle subject to quality assurance oversight.

— Describe the tasks to be performed for quality
assurance. These tasks are discussed in detail
in Sections 3-14 of the SQA Plan.

— Describe the relationships between the SQA
tasks and the project review points.

3. SQA Responsibilities. Identify the organizational
elements responsible for each SQA task.

— Identify the persons responsible for the SQA
Plan.

— Identify the person responsible for overall
software quality, by name.

4. Documentation. List the documents subject to
SQA oversight.

— List the documents. This list should generally
coincide with the list provided in the Software
Project Management Plan, as discussed in
Section 3.1.1.

— Discuss how each document will be reviewed
by the SQA organization for adequacy.

5. Standards, Practices, Conventions, and Metrics.
Describe all safety-related standards, practices,
conventions, and metrics that will be used during
the development process.

— Identify the life cycle phase to which each
standard, practices, conventions, and metrics
applies.

1.  Introduction

1.1.  Purpose

1.2.  Scope

1.3.  Definitions and Acronyms

1.4.  References

2.  Management

2.1.  Organization

2.2.  Tasks

2.3.  Responsibilities

3.  Documentation

4.  Standards, Practices, Conventions and Metrics

5.  Reviews and Audits

6.  Test

7.  Problem Reporting and Corrective Action

8.  Tools, Techniques and Methodologies

9.  Code Control

10.  Media Control

11.  Supplier Control

12.  Records Collection, Maintenance and Retention

13.  Training

14.  Risk Management

Figure 3-3.  Outline of a Software
Quality Assurance Plan
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— Specify how compliance with each standard,
practices, conventions, and metrics will be
assured.

— The following (from IEEE 730.2) lists
standards, practices, conventions, and metrics
that may apply to the different life cycle
phases:

* Documentation standards.

* Logic structure standards.

* Coding standards.

* Commentary standards.

* Testing standards and practices.

* Product and process metrics.

6. Reviews and Audits. Describe the reviews and
audits to be carried out during the development
process.

— Identify each technical and managerial review
and audit.

— Describe how each review and audit will be
carried out.

— Describe how follow-up actions will be
implemented and verified.

— The following (from IEEE 730.1) lists a
minimal set of reviews and audits; the actual
set should be determined by the project
management and the SQA organization,
acting together:

* Software Requirements Review.

* Preliminary Design Review.

* Critical Design Review.

* Software Verification and Validation
Plan Review.

* Functional Audit.

* Physical Audit.

* In-Process Audits.

* Managerial Reviews.

7. Test. Describe any safety-related tests that will be
required on the software that are not included in
the Software Verification and Validation Plan.

— Identify all such tests.

— Describe how the tests will be carried out.

8. Problem Reporting and Corrective Action.
Describe how safety-related problems encountered
during development will be reported, tracked, and
resolved.

— Identify responsibilities for reporting and
tracking problems.

— Identify responsibilities for ensuring that all
safety-related problems are resolved.

9. Tools, Techniques, and Methodologies. Discuss
any special software tools, techniques, and
methodologies that will be used to support the
SQA activity.

— Identify each tool, technique, and
methodology.

— Identify responsibilities for each tool,
technique, and methodology.

10. Code Control. Describe how source and object
code will be controlled during the project
development. (This is discussed further in Section
3.1.3.)

11. Media Control. Describe the methods and
facilities used to identify the media for each
software product and documentation, including
storage, copying, and retrieval.

12. Supplier Control. Describe the provisions used to
assure that software provided by suppliers will
meet established project requirements.

— Identify the methods to make sure that
suppliers receive adequate and complete
requirements.

— State the methods used to assure the
suitability of previously-developed software
for this project.

— Describe procedures to be used to provide
assurance that suppliers SQA methods are
satisfactory, and consistent with this SQA
Plan.

13. Risk Management. Specify the methods and
procedures employed to identify, assess, monitor,
and control areas of risk, especially those relating
to safety.

3.1.3.  Software Configuration
Management Plan

Software configuration management (SCM) is the
process by which changes to the products of the
software development effort are controlled. SCM
consists of four major parts: the SCM plan (SCMP),
the SCM baseline, the configuration control board and
the configuration manager. The SCMP may exist as a
document of its own, may be part of the SPMP, or may
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be part of a larger project configuration management
plan. Here, the first is assumed, simply as a vehicle for
discussion.

This description is based on ANSI/IEEE standard 828,
Software Configuration Management Plans. The use of
this standard is discussed in another ANSI/IEEE
document, 1042, Guide to Software Configuration
Management. The latter includes, in AppendixA, an
example of a SCM plan for a safety-critical embedded
application.

See Babich 1986 for a general introduction to the topic
of SCM.

The configuration baseline identifies the development
products (termed configuration items) that will be
under configuration control. The configuration control
board (CCB) generally contains representatives from
both customer and developer organizations, and
approves all changes to the baseline. The configuration
manager makes sure the changes are documented and
oversees the process of making changes to the
baseline.

A sample table of contents for a SCM plan is shown in
Figure 3-4. It is based on IEEE 828. The developer
need not follow this sample, provided that the
requirements listed below are included in his own plan.
As usual, issues that are unlikely to directly affect
safety are not discussed in the list of requirements,
which follows:

1. SCM Organization. Describe the organizational
structure of the SCM effort. Major topics to
discuss include:

— Major CM organizational elements and
linkages between them.

— Organizational relationships involving the
CCB.

2. SCM Responsibilities. The various responsibilities
for configuration management are described under
this heading.

— Organizational responsibilities for each
safety-related SCM task.

— Relationships between the SCM organization
and other organizations. For example, the
quality assurance organization and the
software development organization.

— Responsibilities of the CCB.

3. SCM Interface Control. Describe the methods that
will be used for each of the following functions
involving interfaces. All types of interfaces are
included: among organizational elements, among
software modules, between hardware and
software, and so forth.

— Identify all interface specifications and
control documents.

— Describe the method used to manage changes
to interface specifications and related
documents.

— Describe how it will be ensured that such
changes are actually accomplished.

— Describe how the status of interface
specifications and documents will be
maintained.

1.  Introduction

1.1.  Purpose

1.2.  Scope

1.3.  Definitions and Acronyms

1.4.  References

2.  Management

2.1.  Organization

2.2.  SCM Responsibilities

2.3.  Interface Control

2.4.  SCM Plan Implementation

2.5.  Applicable Policies, Directives and Procedures

3.  SCM Activities

3.1.  Configuration Identification

3.2.  Configuration Control

3.3.  Configuration Status Accounting

3.4.  Audits and Reviews

3.5.  Release Procedures

4.  Tools, Techniques and Methodologies

5.  Supplier Control

5.1.  Subcontractor Software

5.2.  Vendor Software

6.  Records Collection and Retention

Figure 3-4.  Outline of a Software Configuration
Management Plan
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4. SCM Plan Implementation. Establish the major
CM milestones. These include such items as:

— Establishment of the CCB.

— Establishment of the configuration baseline.

— The schedule for configuration reviews and
audits.

5. SCM Policies, Directives, and Procedures.
Describe all policies, directives and procedures
that will be used in configuration control. Many of
the examples given in IEEE 828 are shown in the
following list.

— Identification of levels of software in a
hierarchical tree.

— Program and module naming conventions.

— Version level designations.

— Software product identification methods.

— Identification of specifications, test plans and
procedures, programming manuals, and other
documents.

— Media identification and file management
identification.

— Document release process.

— Turnover or release of software products to a
library function.

— Processing of problem reports, change
requests, and change orders.

— Structure and operation of CCB.

— Release and acceptance of software products.

— Operation of software library systems,
including methods of preparing, storing, and
updating modules.

— Auditing of SCM activities.

— Level of testing required prior to entry of
software into configuration management.

— File backup and storage procedures, including
defense against fires and natural disasters.

6. Configuration Identification. Identify the initial
baseline of items under configuration control.
These are the initial configuration items, and will
generally include many different types of things.
The following list is meant to be illustrative, not
exhaustive.

— Management plans and other management
documents.

— Specifications, such as requirements and
design specifications.

— User documentation.

— Test designs, test cases, and test procedure
specifications.

— Test data and test generation procedures.

— Support software.

— Data dictionaries.

— Design graphics, such as CASE designs.

— Source, object, and executable code.

— Software libraries.

— Databases.

— Build instructions.

— Installation procedures.

— Installation configuration tables.

7. Configuration Control. Describe, in detail, the
process by which change takes place.

— Describe the level of authority required to
approve changes. This may vary according to
the life cycle phase.

— Identify the routing of change requests for
each life cycle phase.

— Describe procedures for software library
control, including access control, read and
write protection, CI protection, archive
maintenance, change history and disaster
recovery.

— Define the authority and makeup of the CCB.
Identify members by name and position. State
how changes to the CCB membership will be
made known.

— State control procedures for nonreleased
software, off-the-shelf software, and other
special software products.

8. Configuration Status Accounting. Describe the
method by which SCM reporting will take place.

— Describe how information on the status of the
various configuration items will be collected,
verified, stored and reported.

— Identify periodic reporting requirements.
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9. Audits and Reviews. Define the role of the SCM
organization in reviews and audits of the life cycle
products. (The development organization may
wish to address this topic in the V&V plan instead
of here.)

— Identify which configuration items will be
covered by each review and audit.

— State the procedures to be used for identifying
and resolving problems that are discovered in
reviews and audits.

10. Supplier Control. State how the SCM procedures
will apply to purchased and subcontractor-
developed software.

Changes to software requirements, design
specifications, and code are almost certain to occur. It
is necessary to keep track of such changes and their
potential impact on safety. The purpose of
configuration management is to manage the tracking,
to make sure that the version of a configuration item
(CI) that is being changed is actually the current
version, and to always know the current release of CIs.
If this is not done, there are a number of significant
dangers. (1) A safety-related change might be lost, and
not done. For example, a change to the design might
not be carried through to the code. (2) Two or more
people might be simultaneously changing the same CI,
resulting in inconsistent changes or lost changes. The
latter can occur when the second person to finish the
change overwrites the change made by the first person.
(3) A software release may be issued containing
inconsistent versions of the various code modules.

Developing and carefully following an SCMP helps to
avoid the aforementioned problems. When a change is
desired, the CCB will examine the change and decide
whether or not it should be implemented. For example,
the change might be required for safety reasons, so
should be approved. On the other hand, the suggested
change might have a negative impact on some
apparently unrelated safety issue; in this case, the
change will have to be modified or rejected.

Once the CCB has approved the change, the
configuration manager oversees the process of
implementing the change. This is a process issue; the
configuration manager is not involved in the technical
aspects of the change. The technical person who will
actually carry out the change will request control of the
CI from the configuration manager. The latter makes
sure the CI is available; that is, no other person is
currently changing it. Only one person is permitted to
work on the CI at any one time. Once the CI is

available, it is “checked out” to the technical person,
who is now responsible for it. He will make the needed
changes. Once this is done, and any tests or reviews
have taken place, the CI is returned to the
configuration manager, who ensures that all procedures
have been followed. The new document or module
now becomes the new baseline, for use in the future for
other changes, or for constructing product releases.

This report requires a SCM plan to be written and
followed. At this point, only the plan is at issue. The
later stages of the project life cycle will require
assessment of the actual process of configuration
management.

3.1.4.  Software Verification and
Validation Plan

Verification is the process that examines the products
of each life cycle phase for compliance with the
requirements and products of the previous phase.
Validation is the process that compares the final
software product with the original system requirements
and established standards to be sure that the customer’s
expectations are met. The combination of verification
and validation (V&V) processes generally includes
both inspections and tests of intermediate and final
products of the development effort. Figure 3-5, taken
from IEEE Standard 1012, provides an overview of the
process. See also ANS 7-4.3.2 and ANS 10.4.

Software V&V is discussed in detail in Barter 1993.
That document gives a background discussion of V&V
issues, the V&V plan, and V&V activities throughout
the life cycle. Consequently, nothing more will be
written here about the general issues.

The V&V plan can be based on ANSI/IEEE standard
1012, Verification and Validation Plans. A sample
table on contents for a software V&V plan, based on
this standard, is shown in Figure 3-6. The developer
need not follow this sample, provided that all V&V
requirements are included in the developer’s own plan.
The figure assumes that the software life cycle phases
match the life cycle stages presented in Figure 2-1; the
developer will need to make modifications to match
the actual life cycle.

There can be considerable overlap between V&V
activities and Quality Assurance and Safety Analysis
activities. It is the responsibility of the project
management to allocate responsibilities in a way
suitable to the actual project at hand.
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1. Management of Life Cycle V&V. The major
portion of the V&V Plan will be the way in which
V&V will be carried out through the life of the
development project. If this is done carefully, then
the V&V tasks for the remainder of the project
consists of carrying out the Plan. In general, the
following activities should be required for each
phase of the life cycle:

— Identify the V&V tasks for the life cycle
phase.

— Identify the methods that will be used to
perform each task.

— Specify the source and form for each input
item required for each task.

— Specify the purpose, target and form for each
output item required for each task.

— Specify the schedule for each V&V task.

— Identify the resources required for each task,
and describe how the resources will be made
available to the V&V organization.

— Identify the risks and assumptions associated
with each V&V task. Risks include safety,
cost, schedule and resources.

— Identify the organizations or individuals
responsible for performing each V&V task.

2. Requirements Phase V&V. The V&V Plan will
describe how the various V&V tasks will be
carried out during the requirements phase of the
life cycle. The following tasks are identified in
IEEE 1012 as a minimal set:

— Software Requirements Traceability Analysis.

— Software Requirements Evaluation.

— Software Requirements Interface Analysis.

— System Test Plan Generation.

— Acceptance Test Plan Generation.

3. Design Phase V&V. The V&V Plan will describe
how the various V&V tasks will be carried out
during the design phase of the life cycle. The
following tasks are identified in IEEE 1012 as a
minimal set:

— Software Design Traceability Analysis.

— Software Design Evaluation.

— Software Design Interface Analysis.

— Component Test Plan Generation.

— Integration Test Plan Generation.

— Component Test Design Generation.

— Integration Test Design Generation.

— System Test Design Generation.

— Acceptance Test Design Generation.

4. Implementation Phase V&V. The V&V Plan will
describe how the various V&V tasks will be
carried out during the implementation phase of the
life cycle. The following tasks are identified in
IEEE 1012 as a minimal set:

— Source Code Traceability Analysis.

— Source Code Evaluation.

— Source Code Interface Analysis.

— Source Code Documentation Analysis.

— Component Test Case Generation.

— Integration Test Case Generation.

— System Test Case Generation.

— Acceptance Test Case Generation.

— Component Test Procedure Generation.

— Integration Test Procedure Generation.

— System Test Procedure Generation.

— Acceptance Test Procedure Generation.

5. Integration Phase V&V. The V&V Plan will
describe how the various V&V task will be carried
out during the integration phase of the life cycle.
The following tasks are identified in IEEE 1012 as
a minimal set:

— Integration Test Execution.

6. Validation Phase V&V. The V&V Plan will
describe how the various V&V tasks will be
carried out during the validation phase of the life
cycle. The following tasks are identified in IEEE
1012 as a minimal set:

— Acceptance Test Procedure Generation.

— System Test Procedure Execution.

— Acceptance Test Procedure Execution.

7. Installation Phase V&V. The V&V Plan will
describe how the various V&V tasks will be
carried out during the installation phase of the life
cycle. The following tasks are identified in IEEE
1012 as a minimal set:

— Installation Configuration Audit.

— Final V&V Report Generation.
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Required
V&V Inputs

Life Cycle
Phase

Minimum
V&V Tasks

Required
V&V Outputs

Development
schedules
Concept
documentation

•

•

Concept
documentation
evaluation

•

Concept phase
task reporting
Anomaly
reports
V&V phase
summary report

•

•

•

Concept
documentation
SRS
Interface
requirements
documentation
User
documentation

•

•
•

•

Requirements traceability 
analysis
Requirements evaluation
Requirements interface 
analysis
Test plan
generation

•

•
•

•

Requirements
phase task
reporting
Test plan
--- System
--- Acceptance
Anomaly
report(s)
V&V phase
summary
report

•

•

•

•

Standards
SRS
SDD
Interface
requirements
documentation
Interface
design
documentation
User
documentation

•
•
•
•

•

•

Design traceability analysis
Design evaluation
Interface analysis
Test plan generation
Test design generation

•
•
•
•
•

Concept

Requirements

Design

SVVP generation
Baseline change assessment

Management review
Review support

•
•

•
•

Management of V&V

Design phase task
reporting
Test plan
--- Component
--- Integration
Test design
--- Component
--- Integration
--- System
---Acceptance
Anomaly reports
V&V phase
summary report

•

•

•

•
•

Figure 3-5.  Verification and Validation Activities
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Implementation

Test

Installation
and Checkout

Operation
and

Maintenance

Standards
SDD
Source code listing(s)
Executable code
Interface design 
document
User
documentation

•
•
•
•
•

•

Code traceability analysis
Code evaluation
Interface analysis
Documentation evaluation
Test case generation
Test procedure generation
Component test execution

•
•
•
•
•
•

Implementation phase 
task reporting
Test cases
--- Component
--- Integration
--- System
--- Acceptance
Test procedures
--- Component
--- Integration
--- System
Anomaly report(s)
V&V phase summary 
report

•

•

•

•
•

Source code listing(s)
Executable code
User documentation

•
•
•

Test procedure 
generation
Integration test 
execution
System test execution
Acceptance test 
execution

•

•

•
•

Test phase task 
reporting
Test procedures
--- Acceptance
Anomaly report(s)
V&V phase summary 
report

•

•

•
•

Installation 
package

•

Installation 
configuration audit
V&V final report 
generation

•

•

Installation and 
checkout phase task 
reporting
Anomaly report(s)
V&V phase summary 
report
V&V final report

•

•
•

•

Development schedules
Concept documentation
SRS
Interface requirements 
documentation
SDD
Interface design documentation
Source code listing(s)
Executable code
User documentation
SVVP
Proposed/approved changes
Anomaly report(s)
SVVP

•
•
•
•

•
•
•
•
•
•
•
•
•

SVVP revision
Anomaly 
evaluation
Proposed change 
assessment
Phase task 
reiteration

•
•

•

•

Updated SVVP
O&M task reporting
Required phase outputs 
reiterated
Anomaly report(s)

•
•
•

•

SVVP and updates
Task reporting
Phase V&V summary reports
Anomaly reports

•
•
•
•

ANSI/IEEE 1012

Management of V&V

Figure 3-5.  Verification and Validation Activities (cont.)
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3.1.5.  Software Safety Plan

The Software Safety Plan (SSP) is required for safety-
critical applications, such as reactor protection
systems, to make sure that system safety concerns are
properly considered during the software development.
The discussion here is based on an IEEE Draft
Standard, 1228, Software Safety Plans. A sample table
of contents for an SSP, based on the draft standard, is
shown in Figure 3-7. The developer need not follow

this sample, provided that the requirements listed
below are included the actual plan. In particular, the
developer may wish to include many of the Safety
Management requirements in other plans. For example,
CM activities discussed here could be included in the
developer’s SCM plan. The entire SSP could be
included within a global reactor safety plan. The
software safety organization referred to in the list
could be part of the system safety organization. The
requirements for a software safety plan are listed next.

1.  Introduction

1.1.  Purpose

1.2.  Scope

1.3.  Definitions and Acronyms

1.4.  References

2.  Safety Management

2.1.  Organization and Responsibilities

2.2.  Resources

2.3.  Staff Qualifications and Training

2.4.  Software Life Cycle

2.5.  Documentation Requirements

2.6.  Software Safety Program Records

2.7.  Software Configuration Management 
Activities

2.8.  Software Quality Assurance Activities

2.9.  Tool Support and Approval

2.10.  Previously Developed or Purchased Software

2.11.  Subcontract Management

2.12.  Process Certification

3.  Safety Engineering Practices during Software
Development

3.1.  Requirements Safety Analysis

3.2.  Design Safety Analysis

3.3.  Code Safety Analysis

3.4.  Integration Test Safety Analysis

3.5.  Validation Test Safety Analysis

3.6.  Installation Test Safety Analysis

3.7.  Change Safety Analysis

Figure 3-7.  Outline of a Software Safety Plan
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1. Organization and Responsibilities. Describe the
way in which software safety activities fit within
the overall project safety activities and with the
development organization. Major topics to discuss
include:

— Organizational relationships involving the
software safety organization.

— Lines of communication between the software
safety organization, the system safety
organization, and the software development
organization.

— The oversight, review, and approval authority
of the software safety organization.

— The authority of the software safety
organization to enforce compliance with
safety requirements and practices.

— The name and title of a single individual with
overall responsibility for the conduct of the
software safety program.

— The responsibilities of the software safety
organization. Typical responsibilities include
the following:

* Preparation and update of the SSP.

* Acquisition and allocation of resources to
ensure effective implementation of the
SSP.

* Coordination of safety task planning with
other organizational components and
functions. This includes software
development, system safety, software
quality assurance, software configuration
management, and software V&V.

* Coordination of all technical issues
related to software safety with other
components of the development and
support organizations and the regulators.

* Creating, maintaining, and preserving
adequate records to document the
conduct of the software safety activities.

* Participation in audits of the SSP
implementation.

* Training of safety and other personnel in
methods, tools, and techniques used in
the software safety tasks.

2. Resources. Specify the methods to be used to
ensure there are adequate resources to implement
the software safety program. Resources include
(but are not limited to) financial, schedule, safety

personnel, other personnel, computer and other
equipment support, and tools.

— Specify the methods to be used to identify
resource requirements.

— Specify the methods to be used to obtain and
allocate these resources in the performance of
the safety tasks.

— Specify the methods to be used to monitor the
use of these resources.

3. Staff Qualifications and Training. Specify the
qualifications and training required for the
software safety personnel.

— Specify the personnel qualifications required
for each of the following tasks:

* Defining safety requirements.

* Designing and implementing safety-
critical portions of the protection system.

* Performing software safety analysis
tasks.

* Testing safety-critical features of the
protection system.

* Auditing and certifying SSP
implementation.

* Performing process certification.

— Define training requirements and the methods
by which training objectives will be met.

4. Software Life Cycle. Describe the relationship
between software safety tasks and the
development activities that will occur in the
development organization’s chosen life cycle.

5. Documentation Requirements. Specify the
documents that will be required as part of the
software safety program.

— Describe the method of documentation
control that will be used. (The configuration
management organization could be used for
this purpose.)

— List all safety-specific documents that will be
prepared. In particular, there must be
documents describing the results of the
various safety analyses described below in
Sections 3.2.2, 3.3.3, 3.4.2, 3.5.2, 3.6.1, 3.7.5,
and 3.8.1.

— Describe how other project documents must
be augmented to address software safety
activities. At minimum, the following topics
must be addressed:
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* Software project management.

* Software safety requirements.

* Software development standards,
practices, and conventions.

* Software test documentation.

* Software verification and validation
documentation.

* Software user and operator
documentation.

6. Software Safety Program Records. Identify what
software safety program records will be generated,
maintained and preserved.

— At minimum, the following records shall be
kept.

* Results of all safety analyses.

* Information on suspected or verified
safety problems that have been detected
in pre-release or installed systems.

* Results of audits performed on software
safety program activity.

* Results of safety tests carried out on the
software system.

* Records on training provided to software
safety personnel and software
development personnel.

— Specify the person responsible for preserving
software safety program records.

— Specify what records will be used to ensure
that each hazard, the person responsible for its
management, and its status can be tracked
throughout the software development life
cycle.

7. Software Configuration Management Activities.
Describe the interactions between the software
configuration management organization and the
software safety organization.

— Describe the process by which changes to
safety-critical software items are to be
authorized and controlled.

— Describe the role and responsibility of safety
personnel in the change evaluation, change
approval, and change verification processes.

— Describe the relationship between the
Configuration Control Board and the software
safety organization.

— Describe the methods for ensuring that
configuration management of the following

software meets the additional requirements
necessary for safety-critical software:

* Software development tools.

* Previously developed software.

* Purchased software.

* Subcontractor-developed software.

8. Software Quality Assurance Activities. Describe
the interactions between the software quality
assurance organization and the software safety
organization.

9. Tool Support and Approval. Specify the process to
be used and the criteria to be applied in approving
and controlling tool usage. This applies to
development tools, and concerns the
appropriateness of each tool to developing safety-
critical code. The following aspects must be
addressed:

— Tool approval procedures.

— Installation of upgrades to previously
approved tools.

— Withdrawal of previously approved tools.

— Limitations imposed on tool use.

10. Previously Developed or Purchased Software.
State the actions that will take place to ensure that
previously developed or purchased (PDP)
software meet the safety-related requirements of
the development project.

— Define the role of the software safety
organization in approving PDP software.

— Describe the approval process. At minimum,
the following steps should be performed for
PDP software that will be used in safety-
critical applications:

* Determine the interfaces to and
functionality of the PDP software.

* Identify relevant documents that are
available to the obtaining organization,
and determine their status.

* Determine the conformance of the PDP
software to published specifications.

* Identify the capabilities and limitations of
the PDP software with respect to the
safety requirements of the development
project.

* Using an approved test plan, test the
safety-critical features of the PDP
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software in isolation from any other
software.

* Using an approved test plan, test the
safety-critical features of the PDP
software in conjunction with other
software with which it interacts.

* Perform a risk assessment to determine if
the use of the PDP software will result in
undertaking an acceptable level of risk
even if unforeseen hazards result in a
failure.

11. Subcontract Management. Specify the method for
ensuring that subcontractor software meets the
requirements of the software safety program.

— Describe how subcontractors will be
controlled to ensure that they meet the
requirements of the software safety plan.

— Describe how the capabilities of the
subcontractor to support the software safety
program requirements will be determined.

— Describe how the subcontractor will be
monitored to ensure his adherence to the
requirements of the SSP.

— Describe the process to be used to assign
responsibility for, and track the status of,
unresolved hazards identified or impacting the
subcontractor.

12. Process Certification. Specify the method to be
used (if any) to certify that the software product
was produced in accordance with the SSP
processes.

13. Safety Analyses. Specify the various safety
analyses that will be performed for each stage of
the life cycle. These are discussed in detail below
in Sections 3.2.2, 3.3.3, 3.4.2, 3.5.2, 3.6.1, 3.7.5,
and 3.8.1.

— Specify which safety analyses will be carried
out for each life cycle stage.

— Name the person responsible for each
analysis.

— Describe the review procedures that will be
carried out for each analysis.

— Describe the documentation that will be
required for each analysis.

3.1.6.  Software Development Plan

The Software Development Plan provides necessary
information on the technical aspects of the
development project, that are required by the
development team in order to carry out the project.
Some of the topics that should be discussed in this plan
were also listed for the Software Project Management
Plan discussed in Section 3.1.1. The latter document is
directed at the project management personnel, so
emphasizes the management aspects of the
development effort. The document discussed here
emphasizes the technical aspects of the development
effort, and is directed at the technical personnel.

A sample table of contents for a Software
Development Plan is shown in Figure 3-8. The
developer need not follow this sample, provided that
the requirements listed below are included in the actual
plan. Additional information required for development
is discussed in other plans. For example, testing is
discussed in the Software V&V Plan.

The reader is referred to IEEE Standard 1074 for
information on life cycle processes.

1. Life Cycle Processes. Describe the life cycle that
will be used on this project. Discuss the various
processes that make up this life cycle. For each
process, give the input information required in
order to carry out the process, a description of the
actions that must take place during the process,
and the output information produced by the
process. Since the output of one process is likely
to be used as input to another, a data flow diagram
would be appropriate. The processes suggested
here are based on IEEE 1074.

— Requirements Processes.

* Define, Develop, and Document
Software Requirements.

* Define and Document Interface
Requirements.

* Prioritize and Integrate Software
Requirements.

* Verify Requirements.

* Perform and Document Requirements
Safety Analysis.

— Design Processes.

* Define and Document the Software
Architecture. This includes how the
software architecture will fit into the
hardware architecture.
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Figure 3-8.  Outline of a Software
Development Plan

* Design and Document the Database.

* Design and Document Interfaces. This
includes all interfaces between the
software components, and between
software, hardware, and instrumentation.

* Select or Develop and Document
Algorithms.

* Perform and Document Detailed Design.

* Verify the Software Design.

* Perform and Document Design Safety
Analysis.

— Implementation Processes.

* Create Unit Development Folders.

* Create Source Code.

* Create and Document Test Data.

* Generate Object Code.

* Perform and Document Unit Testing.

* Verify the Software Implementation.

* Perform and Document Implementation
Safety Analysis.

— Integration Processes.

* Specify and Document System Build
Methods.

* Integrate Hardware, Software and
Instrumentation.

* Create and Document Integration Test
Procedures and Test Cases.

* Perform Integration Testing.

* Verify the Software Integration.

* Perform and Document Integration
Safety Analysis.

— Validation Processes.

* Specify and Document Validation Test
Procedures and Test Cases.

* Perform and Document Validation
Testing.

* Verify the Validation Testing.

* Perform and Document Validation Safety
Analysis.

— Installation Processes.

* Specify and Document Installation
Procedures.

* Specify and Document Installation
Acceptance Procedures.

* Specify and Document Installation Test
Procedures and Test Cases.

* Specify and Document Installation
Configuration Tables.

* Verify the Installation Procedures.

* Perform and Document Installation
Safety Analysis.

— Operation and Maintenance Processes.

* Specify and Document Operation
Procedures.

* Specify and Document Regression Test
Procedures and Test Cases. This will
probably consist of the installation test
procedures and test cases, augmented by
tests to cover any faults found and
repaired during operation.

2. Methods, Tools, and Techniques. Describe the
methods and techniques that will be used to
develop the software, and the tools that will be
used in connection with those methods and
techniques.
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— Requirements. Describe the requirements
methodology and any tools that will be used
to implement it. A formal requirements
methodology is recommended for reactor
protection systems. Specify any requirements
tracking tool that will be used.

— Design. Describe the design method and any
tools that will be used to implement it. A
formal design method is recommended for
reactor protection systems. Specify any CASE
tools that will be used. Specify what
computers will be used to perform and
document the software design.

— Implementation. Describe the implementation
method and all tools that will be used in
implementation. Specify what programming
language will be used. Specify the compiler
and linker that will be used. Specify what
computers will be used for software
development and unit testing.

— Integration. Describe the integration method
and any tools that will be used to implement
the integration. Note that integration
validation procedures, methods and tools are
described in the Software V&V Plan. This
includes integration testing.

— Installation. Describe the installation method
and any tools used to assist in installation.
Note that installation validation procedures,
methods, and tools are described in the
Software V&V Plan. This includes
installation testing.

3. Standards. List all international, national, and
company standards that will be followed in the
project.

4. Schedule and Milestones. List all of the technical
milestones that must be met. Describe what is
expected at each milestone.

5. Technical Documentation. List all of the technical
documents that must be produced during the
software development. Discuss milestones,
baselines, reviews, authors and sign-offs for each
document. This list may be all of or a subset of the
list given in Section 3.1.1.3.

3.1.7.  Software Integration Plan

Software integration actually consists of three major
phases: integrating the various software modules
together to form single programs, integrating the result

of this with the hardware and instrumentation, and
testing the resulting integrated product. During the first
phase, the various object modules are combined to
produce executable programs. These programs are then
loaded in the second phase into test systems that are
constructed to be as nearly identical as possible to the
ultimate target systems, including computers,
communications systems and instrumentation. The
final phase consists of testing the results, and is
discussed in another report (Barter 1993).

A sample table of contents for a Software Integration
Plan is shown in Figure 3-9, based on IEC 880. The
developer need not follow this sample, provided that
the requirements listed below are included in his own
plan. These requirements are listed next.

1. Integration Level. Multiple levels of integration
may be necessary, depending on the complexity of
the software system that is being developed.
Several integration steps may be required at some
levels.

1.  Introduction

1.1.  Purpose

1.2.  Scope

1.3.  Definitions and Acronyms

1.4.  References

2.  Identification of the Integration Process

2.1.  Integration Level

2.2.  Integration Objects and Strategies

3.  Integration Marginal Conditions

3.1.  Integration and Testing Environment

3.2.  Priorities

3.3.  Risks

3.4.  Other Marginal Conditions

4.  Organization of Integration

4.1.  Integration Network Plan

4.2.  Personnel and Responsibilities

5.  Integration Procedures

5.1.  Required Products

5.2.  Integration Instructions

5.3.  Special Handling

Figure 3-9.  Outline of a Software
Integration Plan



Section 3. Activities

36

— Describe the different levels of integration
and the scope of each integration step at each
level.

— Give a general description of the various
objects that will be included in each step at
each level.

2. Integration Objects and Strategies.

— Give a complete list of all objects, computer
hardware, instrumentation, software, and data
that will be included in each integration step.

— Describe the strategy that will be used for
each integration step.

3. Integration and Testing Environment.

— Describe the environment that will be used to
perform and test each integration step.

— List the tools that will be used in each
integration step.

4. Integration Priorities. Allocate each integration
step a priority, based on schedule, dependence
along the integration products, risk, and any other
factors deemed important to the development
organization.

5. Integration Risks. Risk here refers primarily to
budget and schedule. Other forms of risk can be
considered, at the option of the development
organization.

— If any integration step involves significant
risk, describe the potential problems and the
preventive measures that will be taken to
avoid them.

6. Integration Network Plan.

— Order the integration steps into a time
sequence. This order is determined primarily
by the dependencies among the integration
steps. Steps at more detailed levels will
generally be required to complete successfully
before a step at a more general level can be
performed. Other factors can influence this
order.

7. Integration Personnel and Responsibilities.

— List the personnel who will be involved in the
integration steps.

— Provide a means to keep this list up to date.

8. Integration Products.

— List all of the products of each integration
step.

9. Integration Instructions. Provide the technical
instructions needed to carry out each integration
step, as follows.

— List the inputs to the integration step.

— Describe the procedures for obtaining the
input items (hardware, instrumentation,
software, and data) for the step. This is
expected to involve the CM organization.

— Describe the integration process for the step.

— List the outputs of the integration step.

— Discuss contingency strategies if the
integration fails to complete.

— Describe the procedures for delivering the
completed integration product to the
configuration management organization.

— Describe the procedures for delivering the
completed integration product to the V&V
organization for integration testing.

3.1.8.  Software Installation Plan

Software installation is the process of installing the
finished software products in the production
environment. The Installation Plan will describe the
general procedures for installing the software product.
For any particular installation, modifications, or
additions may be required to account for local
conditions.

A sample table of contents for a Software Installation
Plan is shown in Figure 3-10. The developer need not
follow this sample, provided that all of the installation
requirements are included in the actual plan.
Installation testing may be included in this plan, or in
the V&V plan. The latter alternative is presumed here.

1. Installation Environment. Describe the
environment within which the software product is
expected to perform. This can include the reactor
itself, the reactor protection system, and the
protection system instrumentation and computer
hardware. This description should be limited to
those items required for successful installation and
operation.
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1.  Introduction

1.1.  Purpose

1.2.  Scope

1.3.  Definitions and Acronyms

1.4.  References

2.  Identification of the Installation Environment

2.1.  Application Environment

2.2.  Computer Hardware

2.3.  Instrumentation

3.  Installation Package

3.1.  Installation Software

3.2.  Installation Documents

4.  Installation Procedures

Figure 3-10.  Outline of a Software
Installation Plan

2. Installation Package. Describe all of the materials
that will be included in the installation package.
This will include the software products, the media
that contain them, and associated documents. If
alternatives are available, describe each. For
example, several different installation media might
be provided.

3. Installation Procedures. Describe completely the
procedure for installing the software in the
operational environment. This should be a step-
by-step procedure, written for the anticipated
customer. Anticipated error conditions should be
described, with the appropriate recovery
procedures.

3.1.9.  Software Maintenance Plan

Software maintenance is the process of correcting
faults in the software product that led to failures during
operation. There is a related activity, sometimes
termed “enhancement,” which is the process of adding
functionality to a software product. That is not
considered here. Enhancement of a reactor protection
system should repeat all of the development steps
described in this report.

The software maintenance plan describes three primary
activities: reporting of failures that were detected
during operation, correction of the faults that caused
those failures, and release of new versions of the
software product. A sample table of contents for this
plan is shown in Figure 3-11. The developer need not

follow this sample, provided that all the necessary
activities are included in his own plan.

The maintenance activity should include use of a
configuration management system to track the failure
reports, fault corrections, and new releases of code and
documents.

1. Failure Reporting. A well-designed method must
exist for collecting operational failures and
making them known to the software maintenance
organization. The essential points are that no
failures be overlooked by the customer and that no
failures be lost by the maintenance organization.
All failures must be tracked by the maintenance
organization. This includes software failures,
misunderstandings on the part of operators,
mistakes in documents, bad human factors, and
anything else that causes the protection to fail or
potentially to fail.

— Failure detection includes all procedures by
which the existence of the failure is recorded
by the customer. This will generally include
reporting forms.

— Failure reporting includes the procedures used
to inform the maintenance organization of the
failures. It includes transmission of the failure
reports from the customer to the maintenance

1.  Introduction

1.1.  Purpose

1.2.  Scope

1.3.  Definitions and Acronyms

1.4.  References

2.  Failure Reporting Procedures

2.1.  Failure Detection

2.2.  Failure Reporting

2.3.  Failure Tracking

3.  Fault Correction Procedures

3.1.  Fault Detection

3.2.  Fault Repair

3.3.  Testing Correction

3.4.  Regression Testing

4.  Re-release Procedures

Figure 3-11.  Outline of a Software
Maintenance Plan
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organization, and entry of these reports into a
failure tracking system. The latter should be
under configuration control.

— Failure tracking consists of the procedures
used to make sure that the failure is assigned
to some person or group for analysis and fault
detection. The failure tracking system should
permit management to always know who is
responsible for handling the failure and any
causative faults.

2. Fault Correction. Every failure is caused by one or
more faults. These may be an incorrect
requirements specification, a design error, or a
coding error. The fault must be found and
corrected. This includes correction of any related
documentation if that is necessary. The plan will
describe the method to be used in finding and
correcting the fault

— Fault detection includes all activities required
to find the fault or faults that caused the
failure.

— Fault repair consists of all activities and
procedures involved in correcting the fault.

— Because the failure was not discovered during
any of the previous test activities, the
acceptance test will need to be modified to
take the new failure into account.

— Regression testing is the process of testing the
newly modified software product to make
sure that no new faults have been placed into
the software

3. Re-release. Procedures must be defined to create
new versions of the software product, releasing
these to the customers and ensuring that the newly
corrected software product is correctly installed.

3.1.10.  Software Training Plan

The training plan will describe the procedures that will
be used to train the operators of the software system. In
this case, reactor operators will need to be trained in
use of the protection system software. It is also
possible that training will be required for managers and
for maintenance personnel.

The actual training requirements depend to a great
extent on the actual software product, development
organization, maintenance organization, and customer
(utility). Consequently, no attempt is made here to
outline the contents of the training plan.

3.2.  Requirements Activities

Perhaps the most critical technical tasks in any
software development project are those tasks that relate
to the understanding and documentation of the
software requirements. This is especially true for a
project, such as a reactor protection system, in which
safety is a vital concern. There are several risks if the
software requirements are not fully documented. Some
requirements may be omitted, others may be
misunderstood, still others may be interpreted
differently by different developers. Any of these can
create a hazard in a safety-critical application.

Software requirements are concerned with what the
software must do in the context of the entire
application, and how the software will interact with the
remainder of the application. These two aspects are
captured here in the Software Requirements
Specification. In actual usage, the aspects may be split
into two documents, if so desired by the development
organization. It is also possible to record the
requirements specifications in some type of computer
database, using a requirements tracking system or a
CASE tool.

In the discussion here, four documents are described.
Taken together, they span the documentation, analysis,
and review of the various requirements activities. The
development organization may choose to combine
some of the documents, or to have additional
documents. This is not of great importance as long as
the information discussed below is included in some
document. The documents are:

• Software Requirements Specification.

• Requirements Safety Analysis.

• V&V Requirements Analysis Report.

• CM Requirements Report.

The V&V and CM reports are described in detail in the
V&V and CM plans, so are not discussed here.

3.2.1.  Software Requirements
Specification

The SRS is required for a safety-critical application, to
make sure that all safety-related system requirements
are made known to the software developers. These
requirements come from the overall application system
design, and reflect the requirements placed on the
software by the application system. In a reactor
protection system, this means that the protection
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system design must be known and documented, and
the demands that the system makes on the computer
system must be known. A hazard analysis of the
protection system should be available.

The discussion here is based on IEEE 830, Software
Requirements Specification. Topics have been added
that relate specifically to real-time safety-critical
systems. A sample table of contents of an SRS is
shown in Figure 3-12. The developer need not follow
this outline, provided that the requirements for an SRS
that are listed below are included. In particular, the
developer is encouraged to use some form of
automated (or semi-automated) requirements tracking
system, or to use a CASE system.

1. Project Perspective. Describe the way in which the
software system fits within the larger reactor
protection system. This section can be thought of
as an overview of the software project, showing
how it fits within the larger protection system.

— Describe briefly the functions of each
component of the protection system, to the
extent required for the software developers to
understand the context of the software
requirements.

— Identify the principal external interfaces of
the software system. A context diagram,
showing the connections between the
protection system and the software system,
can be quite helpful.

— Describe the computer hardware and
instrumentation that will be used, if this is
known and imposed by outside authority. Be
sure that no unnecessary constraints are
imposed on the software design.

2. Project Functions. Describe briefly the functions
of the various parts of the software system. Do not
go into great detail here—that is reserved for
Section 3 of the SRS. Instead, think of this section
as a self-contained management overview.

— For the sake of clarity, the functions listed
here should be organized so that they can be
understood to the customer, assessor, and
regulator.

— Block diagrams, data flow diagrams, finite
state diagrams, and other graphical techniques
can be helpful, but are not mandatory.

3. User Characteristics. Describe the general
characteristics of the users of the software system.
These will include the reactor operators and

1.  Introduction
1.1.  Purpose
1.2.  Scope
1.3.  Definitions and Acronyms
1.4.  References

2.  General Description
2.1.  Project Perspective
2.2.  Project Functions
2.3.  User Characteristics
2.4.  General Constraints
2.5.  Assumptions and Dependencies
2.6.  Impacts

2.6.1.  Equipment Impacts
2.6.2.  Software Impacts
2.6.3.  Organizational Impacts
2.6.4.  Operational Impacts

3.  Specific Requirements
3.1.  Functional Requirements for Software 
Components
3.2.  Performance Requirements

3.2.1.  Modes of Operation
3.2.2.  Timing Requirements
3.2.3.  Flexibility Requirements

3.3.  Interface Requirements
3.3.1.  Operator Interfaces
3.3.2.  Instrumentation Interfaces
3.3.3.  Software Interfaces
3.3.4.  Hardware Interfaces

3.4.  Reliability Requirements
3.4.1.  Availability
3.4.2.  Reliability
3.4.3.  Safety.
3.4.4.  Maintainability
3.4.5.  Backup
3.4.6.  Recovery and Restart
3.4.7.  Software and Hardware Diagnostic
Capabilities
3.4.8.  Fault Tolerance

3.5.  Design Constraints
3.5.1.  Standards Compliance
3.5.2.  Hardware Limitations
3.5.3.  Software Limitations

3.6.  Security Requirements

3.7.  Database Requirements

3.8.  Operations Requirements

Figure 3-12.  Outline of a Software
Requirements Specification
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software maintainers, and may include reactor
management personnel, depending on the specific
requirements imposed by the overall protection
system.

— For each class of user, give those
characteristics that will be required in order to
design the software system. This can include
educational level, experience with nuclear
reactors, experience with real-time computer
systems, and general technical ability.

4. General Constraints. Give a general description of
outside factors that will limit the designer’s
options. The following list is typical, not
exhaustive:

— Regulatory and other legal policies.

— Hardware limitations.

— Interfaces to other applications.

— Audit functions.

— Use of specific operating systems, compilers,
programming languages, and database
products.

— Use of specific communications protocols.

— Critical safety considerations.

— Critical security considerations.

5. Assumptions and Dependencies. List each of the
factors that can affect the requirements or design if
they change. These are not design constraints, but
more general assumptions. For example:

— Business conditions.

— Anticipated changes in laws or regulations.

— Availability of specific hardware or software.

— Possible changes in the computer industry.

6. Impacts. Provide warnings about anticipated
impacts of the new software system. For a new
reactor, this section of the SRS is probably not
applicable. However, if an existing protection
system is being replaced by a new computer-based
protection system, impacts should be described.
The purpose is to provide ample time to prepare
for the new system.

— Summarize any changes that will be required
to existing equipment, new equipment that
must be installed, and building modifications
that may need to be made.

— Discuss any additions or modifications that
will be needed to existing applications and

support software in order to adapt them to the
new software system.

— Describe any organizational impacts required
by the new software system. This can include
reorganizations, increase or decrease in staff
levels, upgrade of staff skills, and changes to
interfaces with regulators.

— Summarize any operational changes that will
be required, such as operational procedures,
relationships between the reactor protection
system and the reactor operators, staff
procedures, data retention and retrieval
procedures, reporting channels and methods,
failure consequences, and recovery
procedures and processing time requirements.

7. Functional Requirements. This large section of the
SRS describes what the software system must do.
The section can be subdivided in a manner that
makes the functional requirements clear. For
example, functions that relate to particular
protection system activities could be grouped
together, or functions that relate to particular
protection system components.

— Each functional requirement should be
individually numbered, for reference by
designers and assessors.

— Each functional requirement should be stated
in a single positive sentence. Additional
sentences may be included if necessary to
fully describe the requirement.

— It is frequently useful to state what is not
required, so that the designers do not provide
unwanted functionality.

— It is desirable to use a formal language to
describe the functions. This can be the only
language used, or English can be used as a
supplement. The formal language may, for
example, be a language such as Z, which is
based on mathematical logic (Stepney 1987).
An English description may be required in
addition to the formal specification in order to
ensure that the latter is comprehensible to
developers, managers, users, and auditors.

8. General Interface Requirements. The Software
Interface Specification should identify the
reliability and safety requirements associated with
each system interface. The list given next, from
Redmill 1988, applies to all interfaces. Separate
lists are given below for instrumentation and
operator interfaces.
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— Functions provided and required by the
system and its processes.

— Sequences of interactions.

— Input/output files for batch transfer to and
from other systems.

— Nature of the information transferred.

— Definition of printed or microfilm outputs.

— Formats.

— Available options.

— Timing.

— Color.

— Frequency of demands.

— Accuracy.

— Message error rates and types.

— Electrical and mechanical interface
requirements.

— Input checking.

— Presentation formats.

— Information density.

— Alerting signals.

— Backup and error correction.

— Security requirements.

9. Operator Interface Requirements. Define all of the
requirements for communication between the
software system and the operators.

— Be careful to define only the requirement, not
the design. In particular, do not specify the
appearance of operator screens unless that
appearance is really a requirement.

— The following aspects of operator interfaces
should be considered if they apply to the
application (Redmill 1988):

* Positioning and layout of controls and
displays

* Human reaction and decision times

* Use of colors, bold face, underlining and
blinking on displays

* Menu techniques

* Default values

* Response times

* Help facility

* Comfort signals

10. Instrumentation Interface Requirements. In a real-
time system, instrumentation can be divided into
two classes: sensors and actuators.

— For each sensor, describe the values that may
be received from the sensor. Give ranges,

units, precision, error bounds (including
whether the bounds are a function of range),
meaning, calibration, and any other
significant facts about the sensor. If an analog
to digital converter is used, give its resolution.

— For each actuator, describe the values that
may be sent to the actuator. Give ranges,
units, digital to analog resolution, precision,
meaning, calibration, and any other
significant facts about the actuator. (Many
actuators will be simple on/off actuators, and
most of the foregoing list will not apply.)

11. Software Interface Requirements. If the software
system will communicate with any other
application software system, define all the
interfaces between the systems. This
communication may be in terms of subroutine
calls, remote procedure calls, communication
messages, or some other means. All such are
referred to as “messages” here.

— For each message, describe the source and
destination of the message, the message
contents and format, the meaning of the
message, expected return messages,
transmission method and medium, error
conditions, expected frequency and size, and
a reasonable upper limit to frequency and
size. An upper limit to frequency, for
example, could be a frequency that is
exceeded less than 0.01% of the time.

— Interactions between the application program
and the operating system are not usually
considered to be interfaces that must be
defined here. There may be rare exceptions,
however, in particular cases.

— The following aspects of communication
system interfaces should be considered if they
apply to the application (Redmill 1988):

* Handshaking

* Error checks

* Input and output communication ports

* Communication protocols and procedures

* Interrupts

* Exception handling and error recovery

* Message formats

* Message throughput

See Preckshot 1992a for more information on
communication systems.
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12. Hardware Interface Requirements. If the software
system must communicate directly with the
computer hardware, define all the interfaces
between the software and hardware systems. As
above, the term “message” is used.

— For each message, describe the software and
hardware elements of the message, the
method of message transmittal, the reason
such message is required, transmission
medium, error conditions, and expected and
upper limit to frequency and size of the
message.

13. Performance Requirements. Specify both static
and dynamic numerical performance
requirements.

— Static requirements include the number of
terminals to support and number of
simultaneous users to support.

— Dynamic requirements include numbers of
transactions per unit of time, task switching
time, amount of data to be processed in
certain time periods, and amount of time that
may have elapsed between a signal being
present at a particular sensor and a resulting
signal arriving at an actuator.

— Modes of operation refer to the basic
configurations in which the system must
operate and in which the system would
exhibit differing performance characteristics.
Examples include: fully operational test and
the partial loss of a particular protection
system component.

— Timing requirements must be specified
numerically, and are usually given in terms of
response time. This is the elapsed time
between the receipt of an input signal from an
operator or sensor and the arrival of a
resulting output signal to an operator or
actuator.

— Timing requirements may depend on the
mode of operation. If so, individual timing
requirements for each mode of operation must
be given.

— Describe the required adaptability (flexibility)
of the software system. This can include the
ability to switch between modes of operation,
operating environments, planned changes or
improvements, and the use of new hardware.
The intent is to provide information to the
designers as to where flexibility will be

important so as to minimize future design
changes.

14. Reliability Requirements. A number of topics
relating to the general subject of reliability are
collected together here.

— Availability is the percent of time that the
software system will be available for use. It
should be stated numerically. Different
availability requirements may exist for the
different modes of operation. State any
assumptions that are used in deriving the
availability number.

— Reliability is a measure of the length of time
the software system can be expected to
operate before failing, under the assumption
that the computer hardware does not fail. The
usual measure is mean time to fail, or failure
rate. Different reliability requirements may
exist for the different modes of operation.
State any assumptions that are used in
deriving the reliability numbers.

— Safety (in this section) is a measure of the
length of time the software system can be
expected to run before failing in such a way
as to cause a system hazard. The usual
measure is the probability that the system will
fail catastrophically per demand. Different
safety requirements may exist for the different
modes of operation. See also the requirements
discussed for a software safety plan, Section
3.1.5, and the later discussions on safety
analyses in Sections 3.2.2, 3.3.3, 3.4.2, 3.5.2,
3.6.1, 3.7.5, and 3.8.1.

— Maintainability is a measure of the length of
time it will take to restore a failed application
to usable status. This may be merely a restart
of the software system; the measure does not
usually include the amount of time required to
identify and fix bugs. The usual measure is
mean time to repair. In this context, the
requirement is the amount of time the system
is permitted to be not working before it is
restored to operation, and may differ for the
different modes of operation.

— Specify any backup, recovery, and restart
requirements. Any special requirements, such
as reinitialization or reconfiguration, should
be described.

— If the application requires the ability to
diagnose hardware or software failures,
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identify these requirements. Acceptable
responses to undesired events should be
characterized. Undesired events, such as
hardware failure and operator errors, should
be described and the required software system
responses should be stated.

— If the application must not only detect
failures, but also recover from them and
continue to operate, the fault tolerance
requirements should be given. Note that no
system can recover from all errors.

— Identify the reliability and safety requirements
associated with each mode of operation. The
following list identifies potential modes of
operation that should be considered (Redmill
1988); not all will necessarily apply to
reactors:

* System generation.

* Installation of new software.

* Normal operation. There may be several
different normal modes.

* Degraded operation.

* Emergency operation.

* Automatic operation.

* Semi-automatic operation.

* Manual operation.

* Periodic processing (such as daily or
hourly).

* Maintenance.

* Housekeeping.

* Shutdown.

* Error isolation.

* Error recovery.

* Backup.

— All aspects of fault, error and failure handling
should be covered (Redmill 1988):

* Hardware/software failure.

+ Failure detection.

+ Failure identification.

+ Failure isolation.

+ Remedial procedures.

+ Redundancy.

+ Fail-safe operation.

* System recovery procedures.

+ Fallback procedures.

+ Reconstruction of obliterated or
incorrectly altered data.

+ Repair of redundant channels.

* Information collection.

+ Separate sources.

+ Separate channels.

* Information processing.

+ Weak signal levels.

+ Data storage.

+ Analysis techniques (correlation).

+ Noise reduction.

+ Error handling.

* Human errors or violations.

+ Security standards.

+ Control aspects.

+ Procedural aspects.

+ Management aspects.

15. Design Constraints. List all guides, standards, and
regulations that apply to the design.

— List any laws and regulations, company
policies, departmental standards, and national
and international standards that may affect the
design of the software system.

— If the application must run on certain
hardware configurations, or in conjunction
with particular software products, list them
here.

16. Security Requirements. Specify the requirements
for protecting the software system from accidental
or malicious access, use, modification,
destruction, or disclosure.

— This may include access restrictions,
cryptographic techniques, the use of history
logs, restrictions on the use of terminals or
communications lines, physical isolation, and
similar matters.

17. Database Requirements. Specify the requirements
for any database that is to be developed as part of
the software system. Be careful not to overspecify;
list only items for which there is an identified
external requirement.

18. Operational Requirements. Specify the normal and
special operations required by the user. This can
include the different modes of operation listed
earlier.

3.2.2.  Requirements Safety Analysis

A safety analysis should be performed for any real-
time system for which safety is a consideration. The
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purpose of the analysis is to identify any errors or
deficiencies that could contribute to a hazard and to
identify system safety considerations that are not
addressed in the software requirements specification.
Four analyses are recommended here; additional
analyses may be required, depending on the nature and
sensitivity of the application. The safety analysis and
the reporting of the results of the analysis could be
included in the project’s V&V activities, or within the
system safety activities. The recommended analyses
are as follows:

• Criticality Analysis determines which software
requirements are safety critical.

• System Analysis determines that all system
requirements have been correctly allocated.

• Specification Analysis determines that each
software safety function and requirement is
correctly and consistently implemented with the
other functions and requirements in the
requirements documentation.

• Timing and Sizing Analysis determines that there
will be sufficient resources to accomplish safety-
critical requirements.

One viewpoint of requirements safety analysis is given
in Lee 1992. This is not the only possible approach.
The discussion here is based on that document, and is
limited to the objectives of the various analyses.

Criticality Analysis will identify those software
requirements that have safety implications so that
analysis efforts can be focused on the most critical
requirements. The analysis must consider each
software requirement and determine its potential
impact on safety. For a reactor protection system,
requirements will be classified as critical or non-
critical, depending on their impact on safety.
Requirements that are determined to be critical must be
delineated in some way to be sure that they receive
sufficient attention during software design, verification
and validation, testing, and later safety analyses.

System Analysis matches the software requirements to
the overall system requirements. Software is a
component of a system that is made up of hardware,
instrumentation, and other software. The objective of
system analysis is to ensure that the software
component requirements are complete and traceable to
the system level requirements and are complementary
to the requirements for other parts of the protection
system. This analysis ensures that the software
component requirements include all necessary

functions and constraints and no unintended ones. This
same criteria should be applied to the software
component interface specifications. The result of the
system analysis is an identification of incomplete,
missing, and incorrectly allocated requirements.

Specification Analysis evaluates the completeness,
correctness, consistency, and testability of software
safety requirements. Well-defined requirements are a
strong standard by which to evaluate a software
component. Specification analysis should evaluate
each requirement singularly and all requirements as a
set. Among the techniques used to perform
specification analysis are hierarchy analysis, control
flow analysis, information flow analysis, and
functional simulation. Hierarchy analysis identifies
missing and incomplete requirements and requirements
for functions that are never used. Control flow analysis
examines the order in which software functions will be
performed and identifies missing and inconsistently
specified functions. Information flow analysis
examines the relationship between functions and data
to identify incorrect, missing, and inconsistent
input/output specifications. Functional simulation
models the characteristics of a software component to
predict performance, check human understanding of
system characteristics, and assess feasibility.

Timing and Sizing Analysis evaluates software
requirements that relate to execution time and memory
allocation. Timing and sizing analysis focuses on
program constraints. The types of constraint
requirements are maximum execution time, time to
execute critical functions, and maximum memory
usage. The analysis should evaluate the adequacy and
feasibility of timing and sizing requirements,
particularly under stress conditions.

3.3.  Design Activities

The next logical activity after the software
requirements have been determined is to design the
software system. The life cycle being used by the
development organization will determine whether or
not all requirements activities are really completed
before the design is begun. However, there are certain
activities that can be considered design, as opposed to
requirements and implementation, no matter what life
cycle is used. These activities are the topic of this
section.

In the discussion here, five documents are described.
Together, they span the documentation, analysis, and
review of the various software design activities. The
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development organization may choose to combine
some of the documents, or to have additional
documents. This is not of great importance as long as
the information discussed below is included in some
document. The documents are:

• Hardware and Software Architecture.

• Software Design Specification.

• Software Design Safety Analysis.

• V&V Design Analysis Report.

• CM Design Report.

The V&V and CM reports are described in the V&V
and CM plans, so are not discussed here.

3.3.1.  Hardware and Software
Architecture

The design architecture consists of a description of the
hardware and software elements, and the mapping of
the software into the hardware. The hardware
architecture will show the various hardware items—
computers, file systems, I/O devices (such as sensors,
actuators, and terminals) and communication networks.
This provides a physical view of where computation
can take place, how information is physically stored
and displayed, and how information is physically
routed from one device to another.

The software architecture will show the various
software processes, databases, files, messages, and
screen designs. This architecture shows the logical
view of where computations take place, where
information is logically stored and displayed, and how
information moves logically from one process, data
store, or input device to another process, data store, or
output device.

Finally, the mapping shows the connections between
the software and the hardware. Each process must run
on a computer, each data store must reside on one or
more physical storage media, each screen display must
be shown on a real terminal, and information must
move over physical communication lines in order to
carry out logical communication between processes
and I/O devices.

The architecture description will probably consist of a
set of drawings, possibly within a CASE tool. For this
reason, no suggestion is made here for a document
table of contents.

3.3.2.  Software Design Specification

The software design specification shows exactly how
the software requirements will be implemented in
software modules and processes. The term “module” is
used here to mean a collection of programming
language statements, possibly including subroutines,
which is compiled as a unit. An (executable) load
module is a collection of one or more modules,
including both application modules and operating
system library modules, that is capable of independent
execution in a computer. The term “process” is used to
mean the execution of a load module on a computer.
Multiple copies of a load module might be running on
the same or different computers at the same time, each
as an individual identifiable process.

Many different design techniques are available. While
a formal design technique is preferred for reactor
protection systems, other alternatives do exist. Some
are described in Pressman 1987. One technique for
real-time systems is given in Hatley 1987. Object-
oriented design techniques are popular in some
quarters (Rumbaugh 1991). An automated or semi-
automated design system is recommended; a CASE
tool is an example. It is best if this design system is
directly linked to the requirements tracking system.

Because of the many design techniques that might be
used, plus the desire to use automated design systems,
no attempt is made here to describe a table of contents
for a design document. Certain requirements can be
placed on the design; these are listed next. This list is
derived from IEEE Standard 1016, Software Design
Descriptions.

1. Whatever technique is used, the software design
should result in a hierarchical decomposition into
layers of design elements. IEEE 1016 defines a
design element as a component “that is
structurally and functionally distinct from other
elements and that is separately named and
referenced.”

2. A design element may be a software system,
subsystem, or module; database, file, data
structure, or other data store; message; program or
process.

3. Each design element should be placed in the
configuration management system as a
configuration item.

4. Each design element must have a number of
attributes. The following list is meant to be
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representative. The designer may have additional
attributes. The description of the attributes should
be as clear as possible. This may, for example,
imply that attributes for many elements are
described together. For example, an entity-
relationship diagram may be used to describe the
structure of several design elements at once. A
state-transition diagram can be used to explain the
interactions of several process design elements.
The intent is to include all necessary design
information in a way that can be implemented
correctly and understood by the assessor.

— The name of the design element.

— The type of the design element, which could
include the system, subsystem, module,
database, file, data structure, screen display,
message, program, and process.

— The purpose of the design element. That is,
why the element exists in the design.

— The function of the design element. That is,
what it does.

— If the element has subordinate elements in the
hierarchical decomposition, list them. A
diagram can be quite helpful for this purpose.

— List all elements with which this element
interacts. This could be done using an entity-
relationship diagram (for databases and data
structures), data flow diagram (for processes),
finite state diagram (for understanding
control), structure chart (for a program), a
transaction diagram (for messages), or
whatever best shows the interactions. The
interaction description should include timing,
triggering events, order of execution, data
sharing, and any other factor that affects
interaction.

— Provide detailed descriptions of the ways in
which the design element interacts with other
design elements. This description includes
both the methods of interaction and the rules
governing the interactions. Methods include
the mechanisms for invoking the design
element, input and output parameters or
messages, and shared data. Rules include
communications protocols, data format, range
of values of parameters, and the meaning of
each parameter or message.

— Describe all resources required by the design
element for it to perform its function. This can
include CPUs, printers, terminals, disk space,

communication lines, math libraries,
operating system services, memory, and
buffer space.

— If the element does any processing, describe
the method by which the element carries out
its function. This can include a description of
algorithms, sequencing of events or processes,
triggering events for process initiation,
priority of events, actual process steps,
process termination conditions, contingency
processing, and error handling. A formal
description of the design processing is
strongly encouraged. Diagrams are
encouraged; this can include data flow
diagrams, control flow diagrams, Warnier-Orr
diagrams, Jackson diagrams, decision tables,
finite state diagrams, and others. See
Pressman 1987.

— If the element is a data store, message, or
screen display, describe its structure. This can
include the method of representation, initial
values, permitted ranges of values, use,
semantics, format, and appearance. The
description should discuss whether the
element is static or dynamic, whether it is
shared by several processes or transactions,
whether it is used for control or value, and
how it is validated. A formal description of
the structure of the design element is strongly
encouraged. An entity-relationship diagram
can be helpful to understanding.

— Include a list of all requirements implemented
by this element. This is used to verify that the
design implements the requirements, and only
the requirements. Some elements may
implement more than one requirements, while
some requirements may need several elements
for a successful implementation. A cross
reference table can be used here.

— List all implementation concerns that are
determined as part of the design. This can
include programming language, use of
operating system privileges, hardware
requirements, error lists, error code lists,
standards and regulations that must be
followed, accuracy, performance
considerations, and reliability considerations.

— List all hazards that may be affected by this
design element, or that may affect the way in
which the element is implemented.
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3.3.3.  Software Design Safety Analysis

A safety analysis should be performed on the software
design of any computer-controlled reactor protection
system. The purpose of the analysis is to verify that the
design correctly and consistently incorporates the
system safety requirements and identifies safety-
critical software design elements and detects errors that
might result in violations of the system safety
requirements. Four new analyses are recommended
here, and one requirement safety analysis should be
reviewed. Additional analyses may be required by the
developer or the assessor, depending on the nature and
sensitivity of the application. The results of the design
safety analysis should be documented. The
recommended analyses are as follows:

• Design Logic Analysis determines whether the
software design equations, algorithms, and control
logic correctly implement the safety requirements.

• Design Data Analysis determines whether the
data-related design elements are consistent with
the software requirements and do not violate
system safety requirements.

• Design Interface Analysis determines that the
interfaces among the design elements have been
properly designed, and do not create a safety
hazard.

• Design Constraint Analysis evaluates any
restrictions imposed on the software requirements
by real-world limitations and the design of the
software system, and determines that no new
safety hazards have been created.

• The Timing and Sizing Analysis performed as part
of the Requirements Safety Analysis (Section
3.2.2) should be reviewed. If the results of that
analysis have changed due to the completion of
the software design, the analysis should be
revised. New information on timing and sizing
generally becomes available during the design
activities, and may change previous conclusions.

Design Logic Analysis evaluates the equations,
algorithms, and control logic of the software design.
Logic analysis examines the safety-critical areas of
each software module. This is done by determining
whether the module implements any of the safety-
critical requirements. The interaction between safety
critical and non-safety critical components should be
identified. Components that generate outputs used by
critical components should also be considered critical.

The control logic used to invoke the program tasks
should be considered critical.

The design must be traceable to the requirements. The
analysis should ensure that all safety critical
requirements have been included in the design. It
should also ensure that no new design features are
developed that have no basis in the requirements.

During logic analysis, the design descriptions, control
flows, and detail design are analyzed to ensure they
completely and correctly implement the requirements.
Special emphasis should be placed on logic to handle
error conditions and high data rate conditions. The
analysis should identify any conditions that would
prevent safety-critical processing from being
accomplished.

Design Data Analysis evaluates the description and
intended use of each data item in the software. Data
analysis ensures that the structure and intended usage
of data will not violate a safety requirement. The
analysis ensures that all critical data item definitions
are consistent with the software requirements. This
includes the range and accuracy of the data item, and
the insertion of the proper values into constants. The
analysis should determine that the precision of
intermediate variables is sufficient to support the final
output accuracy requirements. The use of each data
item in the design logic is also evaluated. This includes
the order of use and the correct use. The usage must be
consistent with the structure, the accuracy, and the
range of the data. The analysis should also focus on
unintentional use or setting of the safety-critical data
by non-safety-critical logic.

Design Interface Analysis verifies the proper design
of a safety-critical software component's interfaces
with other components of the system. This includes
other software components and interfacing software
programs, and hardware components. This analysis
will verify that the software component's interfaces
have been properly designed and do not introduce a
hazard. Design interface analysis will verify that
control and data linkages between interfacing
components have been properly designed. This
includes evaluation of the description of parameters
passed, data items passed and returned, direction of
control, and the form of data. The definition and typing
of parameters must be consistent and compatible. The
evaluation includes the interfaces for safety-critical
components to both critical and non-safety-critical
components.
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Design Constraint Analysis evaluates restrictions
imposed by requirements, by real-world limitations,
and by the design solution. The design materials
describe any known or anticipated restrictions on the
software components. These restrictions may include
timing and sizing constraints, equation and algorithm
limitations, input and output data limitations, and
design solution limitations. Design constraint analysis
evaluates the feasibility of the safety-critical software
based on these constraints.

The design safety analysis should also identify any
additional risks that may arise due to the use of
particular tools, methods, programming languages, or
design approaches. For example, errors in compilers
can create new and unexpected hazards.

3.4.  Implementation Activities

Implementation consists of the translation of the
software design into actual code. This code will exist
in some form, such as a programming language, a
database an implementation language, or a screen
design language. Many such languages exist, varying
from assembler (second generation) languages through
procedure-oriented programming (third generation)
languages to high-level block (fourth generation)
languages.

The discussion here calls for four documents, where
the code listings are considered a single document.
Taken together, they cover the documentation, analysis
and review of the various software implementation
activities. The development organization may choose
to have additional documents.

• Code Listings.

• Code Safety Analysis.

• V&V Implementation Analysis and Test Report.

• CM Implementation Analysis.

The V&V and CM reports and described in the V&V
and CM plans, so are not discussed here. There is little
to say about code listings, other than they must exist,
so that is not discussed either.

3.4.1.  Code Safety Analysis

A safety analysis should be performed on the actual
software that is developed for any computer-controlled
reactor protection system. The purpose of the analysis
is to verify that the implementation correctly and
consistently incorporates the system safety

requirements, identifies safety-critical software
modules and data structures, and detects errors that
might result in violations of the system safety
requirements. Four new analyses are recommended
here, and one requirement safety analysis should be
reviewed; additional analyses may be required by the
developer or the assessor, depending on the nature and
sensitivity of the application. The results of the design
safety analysis should be documented. The
recommended analyses are as follows:

• Code Logic Analysis determines whether the
software correctly implements the software
design.

• Code Data Analysis determines whether the data
structures correctly implement the data structure
design.

• Code Interface Analysis verifies the compatibility
of internal and external interfaces between
software components and other system
components.

• Code Constraint Analysis ensures that the program
operates within the constraints imposed by the
requirements, the design and the target computer
system.

• The Timing and Sizing Analysis performed as part
of the design safety analysis should be reviewed.
If the results of that analysis have changed due to
the completion of the software implementation,
the analysis should be revised. New information
on timing and sizing generally becomes available
during the implementation activities, and may
change previous conclusions.

Code Logic Analysis evaluates the sequence of
operations represented by the coded program. The
logic analysis will detect logic errors in the coded
software. This analysis evaluates the branching,
looping, and interrupt processing of the software
components. The analysis also should ensure that code
that has no basis in the design is not implemented.
Logic reconstruction entails the preparation of
flowcharts or other graphical representations from the
code and comparing them to the design material
descriptions. This analysis verifies the consistency and
correctness of the code with respect to the detailed
design. As part of this process, equations are
reconstructed and compared to the requirements and
design.

Code Data Analysis concentrates on data structure
and usage in the coded software. Data analysis focuses
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on how data items are defined and organized to be sure
the design is correctly implemented. The data analysis
compares the usage and value of all data items in the
code with the descriptions provided in the design
materials to ensure consistency with the design. This
analysis verifies the correct type has been used for
each data item, such as floating point, integer, or array.
This analysis will ensure that data structures are not
used in such a way as to create a potential hazard.
Special attention is applied to accessing arrays to
ensure that code will not access arrays outside their
bounds and destroy safety-critical data.

Code Interface Analysis verifies the compatibility of
internal and external interfaces of a software
component. Interface analysis is designed to verify that
the interfaces have been implemented properly. The
analysis will ensure that the interfaces are consistent
and do not create a potential hazard. At least four types
of interfaces are evaluated: subroutine calls to other
software components, parameters passed through
common or global data, messages passed through
communication systems, and external hardware
interfaces.

Code Constraint Analysis ensures that the program
operates within the constraints imposed on it by the
requirements, the design, and the target computer
system. The constraints imposed include physical,
mathematical, accuracy, speed, and size.

The code safety analysis should also identify any
additional risks that may arise due to the use of
particular tools, methods, programming languages or
implementation approaches. This is in addition to the
similar analysis performed as part of the design safety
analysis.

3.5.  Integration Activities

Integration consists of the activities that are required in
order to combine the various software programs and
hardware items into a single system. The various
hardware modules must be assembled and wired
together according to the hardware design
specifications. The various software modules are
linked together to form executable programs. The
software is then loaded into the hardware. Finally, the
entire combination is tested to be sure that all internal
and external interface specifications have been
satisfied. and that the software will actually operate on
that particular hardware.

The integration activities are governed by the
Integration Plan, discussed above in Section 3.1.7.
Integration testing is described in a separate testing
report (Barter 1993), and follows the Software
Verification and Validation Plan described in Section
3.1.4. The Integration Safety Analysis is carried out
according to the Software Safety Plan described in
Section 3.1.5.

3.5.1.  System Build Documents

The Integration Plan describes the various steps that
will be carried out during the integration process. One
of these is the actual construction of the software
programs from modules and libraries. The exact
procedure for doing this is documented in the System
Build Specification. There will be one such
specification for each program that must be created.
The developer may have a separate build document for
each program, or combine the specifications into a
single document.

The System Build Specification provides the exact
steps taken to build the program. This includes names
of modules and files, names of libraries, and job
control language used to build the program. This
specification must be in sufficient detail to permit the
build to be carried out without ambiguity.

No attempt is made here to provide an outline for the
System Build Specification. It must be tailored to the
particular development process being used, the nature
of the operating system and programming language
being used, and the nature of the hardware upon which
the program will run.

3.5.2.  Integration Safety Analysis

The Integration Safety Analysis will ensure that no
hazards have been introduced during the integration
activities. The method of doing this is not specified
here. It is the responsibility of the developer, the V&V
organization, and the software safety organization to
make sure that all safety concerns have been addressed
during the integration process.

3.6.  Validation Activities

Validation is the set of activities that ensure that the
protection system, as actually implemented, satisfied
the original externally-imposed requirements. In
particular, it is necessary to guarantee that the system
safety requirements are all met. Validation consists of
a mixture of inspections, analyses and tests. The
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inspection and test aspects are discussed in Barter
1993. Safety analysis is described here.

Validation is carried out according to the Software
Verification and Validation Plan described in Section
3.1.4. The Validation Safety Analysis is carried out
according to the Software Safety Plan described in
Section 3.1.5.

3.6.1.  Validation Safety Analysis

The Validation Safety Analysis will examine the entire
system and the process of developing the system, to
ensure that all system safety considerations have been
correctly implemented in the protection system and
that no new system hazards have been created due to
any actions of the protection system. This analysis will
review all previous analyses and ensure that no actions
have taken place to invalidate their results.

The method of performing this analysis is not specified
here. It is the responsibility of the software safety
organization, possibly with the assistance of the V&V
organization and the system safety organization, to
ensure that the Validation Safety Analysis is properly
carried out.

3.7.  Installation Activities

Installation is the process of moving the complete
system from the developer’s site to the operational site.
The nature of reactor construction is such that there
may be considerable time delays between the
completion of the protection computer system by the
developer and the installation of that system in an
actual reactor. The documents discussed here should
provide sufficient information to permit the installation
to take place correctly, and for the protection system to
operate correctly.

Installation is carried out according to the Software
Installation Plan described in Section 3.1.8. The
Installation Safety Analysis is carried out according to
the Software Safety Plan described in Section 3.1.5.

3.7.1.  Operations Manual

The Operations Manual provides all of the information
necessary for the correct operation of the reactor
protection system. This includes normal operation, off-
normal operation, and emergency operation. Start-up
and shut-down of the computer system should be
discussed. All communications between the computer
system and the operator should be described, including

the time sequencing of any extended conversations. All
error messages should be listed, together with their
meaning and corrective action by the operator.

The Operations Manual structure is dependent on the
actual characteristics of the particular computer
system. No suggestion is given here as to a possible
table of contents.

3.7.2.  Installation Configuration Tables

Real-time systems frequently require tables of
information that tailor the system to the operational
environment. These tables indicate I/O channel
numbers, sensor and actuator connections and names,
and other installation-specific quantities. If this
particular protection system requires such a table, the
developer should prepare a document that describes all
the configuration information that must be provided
and how the system is to be informed of the
configuration information. The actual configuration
tables should created as part of the installation activity.
They should be fully documented.

3.7.3.  Training Manuals

An operator training program should be required so
that the operators may learn the correct way to use the
protection system. The Training Manual is an
important part of the training program. It may be
provided by the system developer or the customer
(utility).

No further information on training is provided here.

3.7.4.  Maintenance Manuals

The Maintenance Manual will describe the procedures
to be followed when the operational software must be
changed. The manual may be prepared by the
development organization or by the maintenance
organization. The manual will completely describe all
of the steps that must be carried out to change the
program, validate the changes, prepare new releases,
install the new releases, and validate the installation.

3.7.5.  Installation Safety Analysis

Once the computer system has been installed in the
operational setting, a final safety analysis will be
performed. This will verify that all system safety
requirements are implemented in the installation, that
no safety-related errors have occurred during
installation, and that no hazards have been introduced
during installation.
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3.8.  Operations and Maintenance
Activities—Change Safety Analysis

Changes may be categorized in three separate areas:
software requirement changes; implementation
changes to change the design and code to be compliant
with software or safety requirements; and constraint
changes, such as changes in equipment, assumptions,
or operating procedures.

When software requirement changes are
recommended, the safety activity should analyze those
changes for safety impact. As in requirements analysis,
the analyst should identify safety-critical requirements
and determine their criticality. The analyst should also
identify any safety impacts on system operation,
operating procedures, and the safety analysis activity.
Impacts to the safety activity include the ability to
verify or test the change. The analysis should also
ensure that the change does not make any existing
hazards more severe. Once the requirements change
has been approved, the safety activity should analyze
and test the changes using the methods defined in the
previous sections of this document.

Implementation changes to design or code are analyzed
to identify any safety-critical software components that
are changed and to ensure that only the required
components are changed. Changes to non-critical code
should be analyzed to ensure they do not affect safety-

critical software. The design and code should be
analyzed and tested using the methods defined in the
previous sections of this document.

For constraint changes, the analysis must evaluate the
impact on software safety. The operational changes are
evaluated for changes to operator interfaces or
additional administrative procedures that may result in
a hazard. The change may also affect planned safety
test procedures. Hardware changes are evaluated for
new fault paths that may be introduced or for deletion
of required interlocks. All changes to assumptions
should be evaluated for their impact. The safety
activity may recommend additional software
requirements or design changes based on this analysis.

A safety change database should be developed to track
the status of all changes. The database should include a
tracking number for each change, the level of software
affected (e.g., requirements, design, or code), the
identification and version of the affected component,
safety impact (e.g., none, high, medium, or low), the
development status of the change (e.g., requirements,
design, code, or test), and the safety analysis and
approval status.
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4.  RECOMMENDATIONS, GUIDELINES, AND ASSESSMENT

This section is directed especially at the internal or
external assessor. The life cycle tasks described in
Section 3 are revisited, the reliability and safety risks
associated with each task are discussed,
recommendations for preventing and decreasing these
risks are explored, and guidelines for using best
engineering judgment to implement the tasks are
described. Finally, this section presents a list of
questions that can be used by the assessor when
assessing the work products, processes, and the
development organization’s ability to produce a safe
reactor protection system.

A recommendation is a suggestion that is important to
the safety of the system. A guideline is a good
engineering practice that should be followed to
improve the overall quality, reliability, or
comprehensibility of the system. An assessment
question suggests factors that an assessor should
investigate in order to verify the acceptability of the
task solution.

The assessor may wish to ask additional questions;
nothing written here is meant to imply that assessors
should be restricted to the questions listed here. The
questions are generally phrased in such a way that an
affirmative answer is the preferred answer; a negative
answer may be acceptable, but requires justification.
Many questions ask about the existence of some item;
these should be read as containing an implied question
that the underlying concept is satisfactory to the
assessor. For example, the question “Are general report
formats known?” should be read as implying that the
formats are sufficient to provide the information
needed.

4.1.  Planning Activities

Planning activities are basic to the entire development
effort. There will be at least one plan; the question is
how many plan or plans will there be, who will creates
the plan(s), and who follows the plan(s). If the project
management team does not create the plans, or at least
oversee and coordinate their creation, someone else
will. In the worst case, each member of the
development team acts according to the developer’s
own plan. Different team members will be “marching
to different drummers.” Such chaotic activity is
generally not conducive to safety.

4.1.1.  Software Project Management Plan

The Software Project Management Plan (SPMP) is the
basic governing document for the entire development
effort. Project oversight, control, reporting, review, and
assessment are all carried out within the scope of this
plan.

Without an SPMP, the probability is high that some
safety concerns will be overlooked at some point in the
project development period, that misassignment of
resources will cause safety concerns to be ignored as
deadlines approach and funds expire, and that testing
will be inadequate. Confusion among project
development team members can lead to a confused,
complex, inconsistent software product whose safety
cannot be assured.

4.1.1.1.  Recommendation

A safety-related software project should have an
SPMP. The size, scope, and contents of this plan
should be appropriate to the size, complexity, and
safety-critical nature of the project. Detailed
requirements for a SPMP are provided in Section 3.1.1.
The plan should be under configuration control.

4.1.1.2.  Guideline

The SPMP may be organized according to IEEE
Standard 1058, as shown in Figure 3-2.

4.1.1.3.  Assessment Questions

1. Process Model Questions.

a. Is the timing of project milestones realistic?

b. Is there sufficient time between milestones to
accomplish the needed work?

c. Is sufficient time allotted for review and
audit?

d. Is there time to integrate the software into the
complete protection computer system, and to
integrate that into the reactor protection
system?

e. Is there time to recover from unanticipated
problems?

f. Are project work products and deliverables
well defined?

g. Is it known who will be responsible for each
product and deliverable?
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h. Do adequate resources exist to produce the
products and deliverables?

2. Organizational Structure Questions.

a. Is the project organization structure well
defined?

b. Are responsibilities known and documented?

c. Does a management structure exist to keep
the SPMP up to date?

d. Is the SPMP under configuration control?

3. Organizational Boundary and Interface Questions.

a. Are the boundaries of the development
organization well defined?

b. Are reporting channels clear?

c. Does a formal communication channel exist
between the software development
organization and the regulator or assessor?

4. Project Responsibility Questions.

a. Does the SPMP state that safety is the
primary concern, over budget and schedule?

b. Do management mechanisms exist to enforce
this?

5. Project Priorities Questions.

a. Does the SPMP require that safety is the top
priority, over budget and schedule?

b. Does a mechanism exist for ensuring this?

6. Assumptions, Dependencies, and Constraint
Questions.

a. Are the assumptions that may have an impact
on safety documented in the SPMP?

b. Are external events upon which the project
depends documented?

c. Are project constraints that may have an
impact on safety identified and documented in
the SPMP?

7. Risk Management Questions.

a. Are known risk factors identified?

b. Is the potential impact of each risk factor on
safety described?

c. Does a method exist for managing each risk
that may impact safety?

8. Monitoring and Controlling Mechanism
Questions.

a. Are required reports identified?

b. Are general formats known?

c. Do the formats provide the information
required by the recipient of the report?

9. Staffing Questions.

a. Are necessary special skill needs identified?

b. Do management mechanisms exist in the
SPMP for obtaining people with the required
skills in a timely manner?

c. Are training requirements known and
documented?

10. Technical Methods, Tools, and Techniques
Questions.

a. Are the development computer systems
identified?

b. Do these systems exist?

c. Do they have sufficient resources for the
development work?

d. Are the development methods identified?

e. Are they few in number?

f. Are they sufficiently formal to permit correct
specification and implementation of the
software system?

11. Software Documentation Questions.

a. Are required technical documents identified?

b. Are production dates given?

c. Are these realistic?

d. Are internal review and audit processes
identified?

e. Are sufficient time and other resources
allocated to perform the reviews and audits?

f. Is a specific person identified as responsible
for each document?

12. Project Support Function Questions.

a. Are the referenced support functions defined
in other documents, or defined here? (In the
latter case, see the relevant assessment
checklists below.)

13. Follow-Through Questions.

a. Does evidence exist at each audit that the
SPMP is being followed?

4.1.2.  Software Quality Assurance Plan

Software quality assurance (SQA) is the process by
which the overall quality of the software products is
assessed.

Many aspects of software quality are described in the
various Plans recommended in this report. This
includes the Configuration Management Plan, the
Software Safety Plan, the Software Verification and
Validation Plan, and others. Without a single Software
Quality Assurance Plan governing these various
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individual plans, it is possible that the various
individual plans many not be mutually consistent, and
that some aspects of software quality that are important
to safety may be overlooked.

4.1.2.1.  Recommendation

A safety-related software project should have a
Software Quality Assurance Plan. The size, scope, and
contents of this plan should be appropriate to the size
and complexity of the software system and the risk that
can arise if the software system fails. Detailed
requirements for a Software Quality Assurance Plan
are given above, in Sections 3.1.2. The plan should be
under configuration control.

4.1.2.2.  Guideline

The SQA Plan (SQAP) may be organized according to
IEEE Standard 730.1 as shown in Figure 3-3.

4.1.2.3.  Assessment Questions

Many of the assessment questions that relate to the
SQAP are given later, in the sections that discuss
assessment of the other plans. In particular, see Section
4.1.4.

1. General Questions.

a. Does the SQAP specify which software
products are covered by the Plan?

b. Does the SQAP explain why it was written?
That is, what need does the SQAP satisfy?

c. Does the SQAP explain the standard that was
used to create the SQAP?

2. Management Questions.

a. Is each project element that interacts with the
SQA organization listed?

b. Is the SQA organization independent of the
development organization? If not, is each
dependency clearly justified?

c. Are the life cycle development phases that
will be subject to SQA oversight listed?

d. Are required SQA tasks listed and described?

e. Is the relationship between the SQAP and
other assurance plans described? Does a
method exist for delineating overlapping
responsibilities? Other plans include, but are
not limited to, the Configuration Management
Plan, the Software Safety Plan, and the V&V
Plan.

f. Is the relationship between the SQA
organization and other assurance
organizations described? Other organizations
include, but are not necessarily limited to, the
CM organization, the Safety organization and
the V&V organization.

g. Is the person responsible for the SQAP
identified, by name and position?

h. Is the person responsible for overall software
quality assurance identified, by name and
position?

i. Does the plan explain how conflicts between
the SQA organization and the development
organization will be resolved?

3. Document Questions.

a. Are required software documents listed?

b. Is it known how each document will be
reviewed by the SQA organization for
adequacy?

4. General Review and Audit Questions.

a. Are required reviews and audits listed?

b. Are the methods by which each review and
audit will be carried out described?

5. Requirements Review Questions. Does the SQAP
require the following items:

a. Can each requirement be traced to the next
higher level specification? Example of such
specifications are system specifications and
user requirements specifications.

b. Can each derived requirement be justified?

c. Are algorithms and equations described
adequately and completely?

d. Are logic descriptions correct?

e. Are hardware/software external interfaces
compatible?

f. Is the description of and the approach to the
man-machine interface adequate?

g. Are symbols used consistently in the SRS?

h. Is each requirement testable?

i. Are verification and acceptance requirements
adequate and complete?

j. Are interface specifications complete and
compatible?

k. Is the SRS free from unwarranted design
detail?

6. Preliminary Design Review Questions. Does the
SQAP require the following items:
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a. Are detailed functional interfaces between the
software system under development and other
software, hardware, and people fully defined?

b. Is the software design, taken as a whole,
complete, consistent, and simple?

c. Can the design be shown to be compatible
with critical system timing requirements,
estimated running times and any other
performance requirements?

d. Is the design testable?

e. Can each element of the preliminary design
be traced to one or more specific
requirements?

f. Can each requirement be traced to one or
more specific design elements?

7. Detailed Design Review Questions. Does the
SQAP require the following items:

a. Is the design compatible with the SRS? That
is, can each requirement be traced to the
design, and can each design element be traced
to one or more requirements?

b. Are all logic diagrams, algorithms, storage
allocation charts, and detailed design
representations fully described?

c. Are the interfaces compatible?

d. Is the design testable?

e. Does the final design include function flow,
timing, sizing, storage requirements, memory
maps, databases and files, and screen
formats?

8. Test Questions.

a. If the SQAP includes test requirements that
are not in the V&V Plan, are all such
requirements fully justified?

9. Problem Reporting and Corrective Action
Questions.

a. Does the SQAP include provisions to assure
that problems will be documented, corrected,
and not forgotten?

b. Does the SQAP require that problem reports
be assessed for validity?

c. Does the SQAP provide for feedback to the
developer and the user regarding problem
status?

d. Does the SQAP provide for the collection,
analysis and reporting of data that can be used
to measure and predict software quality and
reliability?

4.1.3.  Software Configuration
Management Plan

Software configuration management (SCM) is the
process by which changes to the products of the
software development effort are controlled. This
includes determining the configuration baseline and
controlling change to the baseline.

Without a Software Configuration Management Plan
(SCMP), it is difficult or impossible to manage
configuration baseline change, or for software
developers to know which versions of the various
configuration items are current. Software modules that
call other modules may be created using an incorrect
version of the latter; in the worst case, this might not
be discovered until operation under circumstances
when correct operation is absolutely necessary to
prevent an accident. This can occur if some functions
are rarely needed, so are inadequately tested or linked
into the final software product.

It is also possible that several people will have
different understandings as to what changes have been
approved or implemented, resulting in an incorrect
final product.

4.1.3.1.  Recommendation

A safety-related software project should have an
SCMP. The plan should provide for baseline
definition, change authorization, and change control.
Detailed requirements for an SCMP are provided in
Sections 3.1.3. The plan should be under configuration
control.

4.1.3.2.  Guideline

The SCMP may be organized according to IEEE
Standard 828 and IEEE Guide 1042, as shown in
Figure 3-4.

4.1.3.3.  Assessment Questions

1. Organizational Questions.

a. Are product interfaces that have to be
supported within the project itself identified?
Software-software? Software-hardware?
Software maintained at multiple sites?
Software developed at different sites?
Dependence on support software?

b. Does the SCMP define the required
capabilities of the staff needed to perform
SCM activities?
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c. Does the plan specify what organizational
responsibilities are likely to change during the
life of the SCMP?

d. Does the plan state who has the authority to
capture data and information and who has
authority to direct implementation of
changes?

e. Does the plan define the level of management
support that is needed to implement the SCM
process?

f. Does the plan define responsibilities for
processing baseline changes?

— Responsibility for originating changes.

— Responsibility for reviewing changes.

— Responsibility for approving changes.

— Responsibility for administrating the
change process.

— Responsibility for validating the changes.

— Responsibility for verifying change
completion.

g. Does the plan specify who has the authority to
release any software, data and documents?

h. Does the plan specify who is responsible for
each SCM activity?

— Ensuring the integrity of the software
system.

— Maintaining physical custody of the
product baselines.

— Performing product audits.

— Library management.

— Developing and maintaining specialized
SCM tools.

i. Does the plan identify the person or persons
with authority to override normal SCM
procedures during exceptional situations?

j. Does the plan explain how any such overrides
will be reconciled with the product baselines,
so that inconsistencies and lost updates do not
occur?

2. SCM Responsibility Questions.

a. If the developer plans to use an existing CM
organization, are required special procedures
identified?

b. Does the plan delineate the assumptions made
by the SCM group?

3. SCM Interface Control Questions.

a. Does the plan identify organizational
interfaces that affect the SCM process, or are
affected by the SCM process?

b. Does the plan identify the important
interfaces between adjacent phases of the life
cycle?

c. Does the plan identify interfaces between
different software modules?

d. Does the plan identify interfaces between
computer hardware and software modules?
Between instrumentation and software?

e. Does the plan identify documents used in
interface control? Where are these documents
defined? How are they maintained?

4. SCMP Implementation Questions.

a. Are the resources planned for SCM sufficient
to carry out the defined tasks? Do they take
into account the size, complexity, and
criticality of the software project?

b. Does the plan describe how SCM activities
will be coordinated with other project
activities?

c. Does the plan describe how phase-specific
SCM activities will be managed during the
different life cycle phases?

5. SCM Policy Questions.

a. Does the plan specify standard identification
procedures? Actual needs in this area are
specific to the project; audit procedures
should ensure that the plan is adequate to
prevent confusion. Unnecessary procedures
can actually interfere with understanding, so
naming policies should be adequately
justified. Policies can include:

— Standard labels for products.

— Identification of the hierarchical structure
of computer programs.

— Component and unit naming conventions.

— Numbering or version level designations.

— Media identification methods.

— Database identification methods.

— Documentation labeling and
identification methods.

b. Do specific procedures exist for interacting
with dynamic libraries? These procedures
may include the following:

— Promoting a software module from one
type of library to another. For example,
from a development library to a
production library.

— Documentation releases.

— Computer program product releases.
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— Firmware releases.

c. Do specific procedures exist to manage the
change process? This includes:

— The handling of change requests.

— Provision for accepting changes into a
controlled library.

— Processing problem reports.

— Membership in the CCB.

— Operation of the CCB.

— Capturing the audit trail of important
changes to product baselines.

d. Do standard reporting procedures exist?
These include:

— Summarizing problem reports.

— Standard CM reports to management and
assessors.

e. Are audit procedures defined in the CM plan?

— Are procedures defined for performing
audits of the CM process?

— Are procedures defined for performing
physical audits of configuration items?

f. Do procedures exist for accessing and
controlling libraries? This includes:

— Security provisions.

— Change processing.

— Backups.

— Long-term storage.

6. Configuration Identification Questions.

a. Does the configuration identification scheme
match the structure of the software product?

b. Does the plan specify when CIs will be given
identification numbers?

c. Does the plan specify which items will be
placed under configuration control (thus
becoming configuration items)?

d. Is a separate identification scheme required
for third-party software?

e. Does the plan explain how hardware and
software identification schemes are related
when the software is embedded in the
hardware? This applies to such things as
firmware, ROM code, and loadable RAM
image code.

f. Does the plan explain if a special scheme is
required for reusable software?

g. Does the plan explain how support software
will be identified? This includes:

— Language translators.

— Operating systems.

— Loaders.

— Debuggers.

— Other support software.

h. Does the plan explain how test data will be
identified?

i. Does the plan explain how databases (such as
installation configuration tables) will be
identified?

j. Does the plan explain how baselines are
verified?

k. Does the identification scheme provide for
identifying different versions and different
releases of the CIs?

l. Does the plan explain how physical media
will be identified?

m. Are naming conventions available for each
modifiable configuration item?

7. Configuration Control Questions.

a. Is the level of authority described in the plan
consistent with the CIs identified in the plan?

b. Does the plan require that each significant
change be under configuration control?

c. Does the plan fully describe the information
needed to approve a change request?

d. Does the plan fully describe CCB procedures
for approving change requests?

e. Does the plan require that safety-related
change requests be so identified, and made
known to the assessors during the next audit?

f. If different change procedures are required
during different life cycle phases, are these
differences fully described in the plan?

g. Does the plan fully describe procedures for
accessing software libraries and controlling
library interfaces? For ensuring that only one
person at a time is able to change software
modules?

h. Does the plan provide a method for
maintaining a change history for each CI?

i. Does the plan provide for library backup and
disaster recovery procedures? Are these
procedures sufficient to enable a change
history for each CI to be recovered if a library
is lost?

j. Does the plan provide a method of associating
source code modules with their derived object
code modules and executable modules?

k. Does the plan provide procedures for keeping
data files synchronized with the programs that
use them?
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l. Does the plan fully describe the authority of
the CCB? Is this authority sufficient to control
safety-related changes to the CI baseline?

m. Does the plan require the CCB to assess the
safety impact of change requests?

n. Does the plan describe fully the procedures to
be used by the configuration manager in order
to oversee changes authorized by the CCB?

o. Does the plan fully describe the authority of
the configuration manager? Is this authority
sufficient to ensure that unauthorized changes
do not take place? That authorized changes
have been fully tested, reviewed, or analyzed
for safety impact?

p. Is there a clearly-stated method for recovering
an old version in the event that a newer
version has problems in execution?

8. Configuration Status Accounting Questions.

a. Does the plan describe what information must
be made available for status reports?

b. Does the plan describe each safety-related
status report, including audience, content, and
format?

c. Does the plan provide a means of tracking
problem reports that relate to safety, and
making sure that each problem reported has
been correctly resolved?

9. Audit and Review Questions.

a. Does the plan provide for a single, separate
audit trail for each CI and for the personnel
working on each CI?

b. Does the plan make provisions for auditing
the SCM process?

c. Does the plan provide for periodic reviews
and audits of the configuration baseline,
including physical audits of the baseline?

d. Does the plan provide for audits of suppliers
and subcontractors, if such are used?

e. Does the plan make provisions to protect
records needed in order to audit and assess the
development process and development
products?

10. Supplier Control Questions.

a. Does the plan require suppliers and
subcontractors to use a configuration
management system consistent with, and
equivalent to, that described for the
development organization itself?

b. Does the plan provide for periodic reviews of
subcontractor CIs, including physical audits?

c. Does the plan explain who is responsible for
performing subcontractor reviews and audits?

11. Follow-Through Questions.

a. Does evidence exist at each audit that the
SCM plan is being followed?

4.1.4.  Software Verification and
Validation Plan

Software V&V is discussed in a separate report (Barter
1993). The following recommendations, guidelines,
and assessment questions are taken from that report.

The software V&V plan is an essential element of the
V&V process because it allows the developer, with
regulatory approval, to define the exact nature of the
process. Once defined, the V&V plan should be
viewed as a “contract” between the developing
organization and the regulating organization.

Without a Software V&V Plan, it will be difficult or
impossible to be sure that the products of each phase of
the software life cycle have been adequately verified,
and that the final software system is a correct
implementation of the requirements imposed upon it
by the original system specifications.

4.1.4.1.  Recommendation

A safety-related software project should have a
Software V&V Plan. The size, scope, and contents of
this plan should be appropriate to the size and
complexity of the software system and the risk that can
arise if the software system fails. Detailed
requirements for a Software V&V Plan are provided in
Section 3.1.4. The plan should be under configuration
control.

4.1.4.2.  Guideline

The Software V&V Plan may be organized according
to IEEE Standard 1012, taking into account the
contents of ANS standards 7-4.3.2 (Appendix E) and
10.4.

4.1.4.3.  Assessment Questions

The assessment questions listed below are from Barter
1993.

1. General Questions.

a. Does the V&V plan reference a management
plan or a quality assurance plan?
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b. Are specific elements of the higher-level
plans addressed in the V&V plan?

c. Does the V&V plan identify the software that
is being placed under V&V?

d. Is the purpose of the protection system clearly
identified?

e. Is the scope of the V&V effort defined?

f. Is a clear set of objectives defined and is there
a sense that the objectives will support the
required level of safety?

2. V&V Overview Questions.

a. Is the V&V organization defined, along with
its relationship to the development program?

* Does the plan call for a V&V
organization that is independent from the
development organization?

* Is the relationship between the V&V
organization and other project elements
(project management, quality assurance,
configuration and data management)
defined?

* Are the lines of communication clearly
defined within the V&V organization?

b. Is a schedule defined that provides enough
time for V&V activities to be effectively
carried out?

* Does the schedule define the expected
receipt dates for development products?

* Does the schedule define the time allotted
to perform V&V activities?

* Does the schedule define the expected
receipt dates for development products?

* Are realistic delivery dates set for V&V
reports?

* Are the performing organizations defined
for each activity?

* Are dependencies on other events clearly
defined?

c. Are the resources needed to perform the V&V
activities in the time allotted defined?

* Are the staffing levels defined and are
they realistic?

* Are resource issues such as facilities,
tools, finances, security, access rights,
and documentation adequate addressed?

d. Are the tools, techniques, and methods to be
used in the V&V process defined? Adequate
consideration should be given to acquisition,
training, support, and qualification of each
tool, technique, and methodology.

* Has each tool been identified by name
along with a description, identification
number, qualification status, version, and
purpose in each V&V activity?

* Has a distinction been made between
existing tools and those that will have to
be developed (if any)?

e. For those tools that have to be developed, is
there an estimate of the time and resources
needed to develop and qualify the tools?

* Have tool development activities been
factored into the schedule?

* For existing tools, have the tools been
adequately qualified?

* For existing tools that have not been
adequately qualified, is there an estimate
of the time and resources needed to
qualify the tool and have the qualification
activities been factored into the schedule?

f. Are techniques and methods defined with the
same level of detail as tools?

* Has each technique and methodology
been identified by name along with a
description, qualification status and
purpose in each V&V activity?

* Have the techniques and methods been
adequately qualified?

* For those techniques and methods that
have not been adequately qualified, is
there an estimate of the time and
resources needed to qualify them, and
have the qualification activities been
factored into the schedule?

* Is there a requirement that the V&V staff
be trained in the techniques and
methodologies used as part of the
development effort?

* Is there a requirement that at least one
member of the V&V staff be experienced
in using the techniques or
methodologies?

3. Software Life Cycle Management V&V
Questions.

a. Is each task identified and tied into the project
V&V goals? There should be a sufficient mix
of tasks so as to completely support the
project V&V goals and only those tasks that
support the goals should be included.

* Have the tasks been clearly identified as
to development materials to be evaluated,
activities to be performed, tools and
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techniques to be used, security and
control procedures to be followed?

* Are all of the tasks identified in Table 1
of IEEE 1012 included?

* If any of the tasks listed in Table 2 of
IEEE 1012 is identified, is there a clear
justification for their use?

b. Does each task identify the methods to be
used and the criteria to be applied to those
methods?

* Are the methods identified for each task
consistent with the V&V overview with
respect to resources, qualification, and
schedule?

c. Is the input required by each task and the
output from each task identified?

* Are the development materials to be
evaluated adequately identified?

* In addition to specific reports identified
for each phase of testing, is output
identified for a summary of positive
findings, summary of discrepancies,
conclusions, and recommendations?

d. Is the method of handling anomalies
encountered during each activity identified?

* Does the output tie into another activity
in such a way as to make the output
meaningful? (i.e., are discrepancies
reported to discrepancy tracking and
resolution activities or are they only
reported and then dropped?)

* Is the content of a discrepancy report
defined?

* Will discrepancy reports include the
name of the document or program in
which the discrepancy was found?

* Will discrepancy reports include a
description of the discrepancy in
sufficient detail so as to be
understandable by a person not familiar
with the original problem?

* Will discrepancy reports include
assessments as to the severity of the
discrepancy and the impact of the
discrepancy?

e. Are V&V schedule and resource requirements
described in detail?

* Have schedule and resources been
adequately defined so as to give a feeling
of confidence that the V&V effort will
not be unduly rushed in its activities?

f. Are the planning assumptions for each V&V
task described? Assumptions about the state
of the development process may include
completion of prior activities, status of
previously identified discrepancies,
availability of resources, and scheduling of
tasks.

* Have the assumptions been identified and
are the assumptions consistent with the
project plan?

g. Does the V&V plan include a contingency
plan to identify risk factors that may cause the
V&V activity to fail to perform its functions?

* Have the risks been identified?

* Is there a contingency plan identified for
each risk for each task?

* Are corrective procedures specified to
minimize disruption to the V&V process?

h. Does the V&V plan identify the
responsibilities of the V&V participants?

* Have organizational elements for the
entire project been identified in the
project plan?

* Have those organizational elements that
interface to the V&V effort been
identified in the project plan and in the
V&V plan in a consistent manner?

* Have specific responsibilities for each
task been assigned to an organizational
unit?

* Have the interfaces between the V&V
organization and the development
organization and regulatory agency been
defined?

i. Does the V&V plan establish a method of
performing base line change assessments?

* Is there a defined procedure for
evaluating proposed software changes
against V&V activities that are in
progress or have been previously
completed?

* Is there a defined procedure for updating
the V&V plan in the event that the
software changes require a change in
schedule and/or resources?

j. Does the V&V plan describe the means by
which management overview of the V&V
effort will be conducted?

* Is the management structure defined?

* Is there a defined procedure for
management review of the V&V process?
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* Does the V&V plan state that
management is responsible for the
technical quality of the V&V process?

* Will management receive summary
reports of V&V process at each phase of
the life cycle?

* Is there a procedure for the periodic
assessment and updating of the V&V
procedures, methods, and tools?

k. Does the V&V effort feed its information
back into the overall development effort
through review support?

* Is there a defined procedure for
correlating V&V results with
management and technical review
documents?

4. System Level V&V Questions.

a. Is the V&V plan coordinated with project
planning documents to ensure that early
concept documents are available to the V&V
effort?

* Does the project plan call for the
identification of initiating documentation
(statement of need, project initiation
memo, or task statement), feasibility
studies, performance goals, preliminary
hazards analysis, and system definition
documentation prior to beginning the
V&V effort?

* Does the V&V plan require the
generation and dissemination of anomaly
reports?

b. Does the V&V plan explicitly define the
activities required before the requirements
development activities begin?

* Does the V&V plan require an evaluation
of the system-level documentation to
determine if the proposed concept will
satisfy user needs and project objectives?

* Does the V&V plan require the
identification of interfaces to other
hardware and software systems along
with any constraints imposed by those
systems?

* Does the V&V plan require the
identification of any constraints or
limitation of the proposed approach?

* Does the V&V plan require an
assessment of the hardware and software
allocations?

* Does the V&V plan require the
assessment of the criticality of each
software item?

5. Requirements Activities V&V Questions.

a. Is the V&V plan coordinated with other
project activities, especially those involving
safety?

* Does the project plan call for the
generation of concept documentation,
SRS, interface requirements, hazards
analysis, and user documentation prior to
beginning the V&V requirements
analysis?

* Does the V&V plan require the
generation and dissemination of anomaly
reports?

* Does the V&V plan define the method of
resolving anomalies?

b. Does the V&V plan explicitly define the
activities required during the requirements
analysis?

* Does the V&V plan require the
performance of a software requirements
traceability analysis that traces elements
of the SRS to elements of the system
requirements?

* Does the trace go both from the SRS to
the system requirements and from the
system requirements to the SRS?

c. Does the V&V plan require a software
requirements evaluation to help ensure that
the SRS is both internally consistent and
consistent with system objectives?

* Does the V&V plan require that the SRS
be evaluated for safety, correctness,
consistency, completeness, accuracy,
readability, and testability?

* Is there a SRS standard and does the
V&V plan require that the SRS conform
to that standard?

* Does the V&V plan require that the SRS
be evaluated for how well the
specifications meet system objectives,
software system objectives and address
issues identified in the hazards analysis?

* Does the V&V plan require that the SRS
be evaluated for performance issues?

d. Does the V&V plan require a software
requirements interface analysis to help ensure
that the software requirements correctly
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define the interfaces to the software (both
hardware and software)?

* Does the V&V plan require that the SRS
be evaluated against hardware
requirements, user requirements, operator
requirements, and software requirements
documentation?

e. Does the V&V plan require a system test plan
and an acceptance test plan that will be used
for later testing?

* Does the V&V plan require that a system
test plan and an acceptance test plan be
generated during the requirements phase?

* Does the V&V plan require that the plans
be defined in enough detail to support the
testing required?

6. Design Activities V&V Questions.

a. Is the V&V plan coordinated with other
project activities, especially those involving
safety?

* Does the project plan call for the
generation of an SRS, software design
documents, interface requirements,
interface designs, and user documentation
prior to beginning the design V&V
analysis?

* Does the V&V plan require the
generation and dissemination of anomaly
reports?

* Does the V&V plan define the method of
resolving anomalies?

b. Does the V&V plan explicitly define the
activities required during the design analysis?

* Does the V&V plan require the
performance of a design traceability
analysis that traces elements of the
software design document (SDD) to
elements of the software requirements?

* Does the trace go both from the SDD to
the SRS and from the SRS to the SDD?

c. Does the V&V plan require a design
evaluation to help ensure that the software
design document is internally consistent,
testable, and meets established standards,
practices, and conventions?

* Does the V&V plan require that the
software design document be evaluated
for correctness, consistency,
completeness, accuracy, readability, and
testability?

* Does the V&V plan require that the
software design document be assessed as
to the quality of the design?

* Is there a software design documentation
standard, and does the V&V plan require
that the software design documents
conform to that standard?

d. Does the V&V plan require a design interface
analysis to help ensure that the software
design correctly meets the hardware, operator,
and software interface requirements?

* Does the V&V plan require that the
software design document be evaluated
against hardware requirements, operator
requirements, and software interface
requirements documentation?

e. Does the V&V plan require a software
component test plan, an integration test plan,
and a test design be generated for use in later
testing?

* Does the V&V plan require that a
software component test plan, an
integration test plan, and a test design be
generated during the design phase?

* Does the V&V plan require that the plans
be defined in enough detail to support the
testing required?

7. Implementation Activities V&V Questions.

a. Is the V&V plan coordinated with other
project activities, especially those involving
safety?

* Does the project plan call for the
generation of software design documents,
interface design documents, source code
listings, executable code at the software
unit level, and user documentation prior
to beginning the implementation V&V
analysis and testing?

* Does the V&V plan require the
generation and dissemination of anomaly
reports?

* Does the V&V plan define the method of
resolving anomalies?

b. Does the V&V plan explicitly define the
activities required during the implementation
phase?

* Does the V&V plan require the
performance of an implementation
traceability analysis that traces source
code to elements of the software design?
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* Does the trace go both from the code to
the design and from the design to the
code?

c. Does the V&V plan require a source code
evaluation to help ensure that the source code
is internally consistent, testable, and meets
established standards, practices, and
conventions?

* Does the V&V plan require that the
source code be evaluated for correctness,
consistency, completeness, accuracy,
readability, safety, and testability?

* Does the V&V plan require that the
source code be assessed as to the quality
of the code?

* Is there a software coding standard and
does the V&V plan require that the
source code conform to that standard?

* Does the V&V plan require that the
source code be evaluated for adherence to
project coding standards?

d. Does the V&V plan require a source code
interface analysis to help ensure that the
source code correctly meets the hardware,
operator, and software design documentation?

* Does the V&V plan require that the
source code be evaluated against the
hardware design, operator interface
design, and software design
documentation?

e. Does the V&V plan require generation and
use of test cases to help ensure the adequacy
of test coverage? The test cases bridge the gap
between the test design and software design
documents and the actual test procedures.

* Does the V&V plan require the
generation of test cases for software
component, integration, system, and
acceptance testing?

* Does the V&V plan require the
generation of test procedures for software
unit, integration and system testing?

* Does the V&V plan require the execution
of the test procedures for software
components?

8. Integration and Validation Activities V&V
Questions.

a. Is the V&V plan coordinated with other
project activities, especially those involving
safety?

* Does the project plan call for the
generation of software design documents,
interface design documents, source code
listings, executable code at the software
component level, and user documentation
prior to beginning the integration and
validation V&V analysis and testing?

* Does the V&V plan require the
generation and dissemination of anomaly
reports?

* Does the V&V plan define the method of
resolving anomalies?

b. Does the V&V plan explicitly define the
activities required during the integration and
validation analysis and testing?

* Does the V&V plan require the
performance of integration, system, and
acceptance testing?

* Are the testing requirements sufficiently
detailed so as to ensure that there is a
very low probability of error during
operation?

9. Installation Activities V&V Questions.

a. Is the V&V plan coordinated with other
project activities, especially those involving
safety?

* Does the project plan call for the
generation of an installation package and
previous phase summary reports prior to
beginning the installation and checkout
V&V analysis and testing?

* Does the V&V plan require the
generation and dissemination of anomaly
reports?

* Does the V&V plan define the method of
resolving anomalies?

b. Does the V&V plan explicitly define the
activities required during the installation
analysis and testing?

* Does the V&V plan require the
performance of an installation
configuration audit?

* Does the V&V plan require the
generation of a final report?

10. Operation and Maintenance Activities V&V
Questions.

a. Is the V&V plan coordinated with other
project activities, especially those involving
safety?
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* Does the project plan require that
development schedules, concept
documentation, SRSs, interface
documents, software design documents,
source code listings, user documentation,
the installation package, and proposed
changes be available prior to beginning
the operation and maintenance V&V
analysis and testing?

* Does the V&V plan require the
generation and dissemination of anomaly
reports?

* Does the V&V plan require that the
software V&V plan be updated in
response to changes?

* Does the V&V plan require the
establishment of a system for evaluating
anomalies, assessing proposed changes,
feeding information into the
configuration management process and
iterating the V&V process as necessary?

* Does the V&V plan define the method of
resolving anomalies?

4.1.5.  Software Safety Plan

The Software Safety Plan is the basic document used
to make sure that system safety concerns are properly
considered during the software development.

Without a Software Safety Plan (SSP), it will be
difficult or impossible to be sure that safety concerns
have been sufficiently considered and resolved. Some
matters are likely to be resolved by different people in
different inconsistent ways. Other matters are likely to
be overlooked, perhaps because people may assume
that others have accepted those responsibilities.

4.1.5.1.  Recommendation

A safety-related software project should have a
Software Safety Plan. The size, scope, and contents of
this plan should be appropriate to the size and
complexity of the software system and the potential
risk should the software system fail. Detailed
requirements for a Software Safety Plan are provided
in Section 3.1.5. The plan should be under
configuration control.

4.1.5.2.  Guideline

The SSP may be organized according to IEEE Draft
Standard 1228, as shown in Figure 3-7. The software
safety organization may be a separate organization, or

may be part of the system safety or quality assurance
organizations. The important issue is its independence
from the development organization.

4.1.5.3.  Assessment Questions

1. Organization and Responsibility Questions.

a. Is the software safety program organization
described? Is the organization structure
practical? Can the organization successfully
manage the software safety program?

b. Are the lines of communication between the
software safety organization, the project
management organization, the software
development team, and the regulators clear?

c. Is the authority of the software safety
organization defined? Is it sufficient to
enforce compliance with safety requirements
and practices?

d. Is a single individual named as having overall
responsibility for the conduct of the software
safety program? Does this person have
adequate authority, training in management,
conflict resolution, and safety and software
engineering to actually carry out this job?

e. Does the manager of the software safety
organization, and the organization itself, have
sufficient autonomy from the development
organization to ensure proper conduct of the
software safety program?

f. Does a mechanism exist for any person
involved with the development project to
communicate safety concerns directly to the
software safety organization? Does the
mechanism protect such a person from
management reprisals?

2. Resource Questions.

a. Does the SSP identify the resources that will
be required to implement the plan? These
include:

— Financial resources.

— Schedule resources.

— Safety personnel.

— Other personnel.

— Computer and other equipment support.

— Tools.

b. Are the resources adequate?

3. Staff Qualification and Training Questions.
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a. Does the SSP specify personnel qualifications
for personnel performing the following
safety-related tasks?

— Defining safety requirements.

— Performing software safety analysis
tasks.

— Testing safety-critical features of the
protection system.

— Auditing and certifying SSP
implementation.

— Performing process certification.

b. Are the qualifications sufficient to ensure the
tasks are carried out correctly and that the
safety concerns are adequately addressed?

c. Does the SSP define on-going training
requirements for personnel with safety-related
responsibilities?

d. Does the SSP specify methods for
accomplishing these training objectives?

e. Are the training requirements sufficient to
ensure that these people have the knowledge
and ability to carry out their defined safety-
related activities?

4. Software Life Cycle Questions.

a. Does the SSP relate safety activities to the
software development life cycle? (Note that
this question may be addressed in the
Software Development Plan rather than in the
SSP.)

b. Does the SSP provide a mechanism to ensure
that known safety concerns are adequately
addressed during the various life cycle
activities?

5. Documentation Questions.

a. Does the SSP describe what safety-related
documents will be produced during the
development life cycle?

b. Are the contents of these documents
described, either here or in some other
development plan?

c. Are the contents sufficient to ensure that
known safety concerns are addressed in the
appropriate places within the development life
cycle?

d. Is a means of document control described in
the SSP?

e. Is the document control system sufficient to
ensure that required documents are preserved
for development assessors?

6. Software Safety Program Records Questions.

a. Does the SSP identify the safety-related
records that will be generated, maintained,
and preserved?

b. Are these records sufficient to provide
adequate evidence that the software safety
program has been properly carried out during
each phase of the software life cycle?

c. Does the SSP identify a person responsible
for preserving software safety program
records?

d. Does the SSP specify the tracking system to
be used to monitor the status of safety-related
documents?

7. Software Configuration Management Questions.
(These questions could be addressed in the
Software Configuration Management Plan instead
of here.)

a. Does the SSP describe the process by which
changes to safety-critical software items will
be authorized and controlled?

b. Does the SSP describe the role and
responsibility of the safety personnel in
change evaluation, change approval and
change verification?

c. Is this sufficient to ensure that no new hazards
are introduced into the protection system
through changes to the protection software?

d. Does the SSP describe how configuration
management requirements will be met for
software development tools, previously
developed software, purchased software, and
subcontractor-developed software?

8. Software Quality Assurance Questions.

a. Does the SSP describe the interactions
between the software safety organization and
the quality assurance organization?

b. Does the SSP require that the software safety
organization have primary responsibility for
ensuring safety, not the quality assurance
organization?

9. Tool Support and Approval Questions.

a. Does the SSP specify the process of
approving and controlling software tool use?

b. Does this process provide a means to ensure
that tool use is appropriate during the
different development life cycle activities?

c. Does the SSP specify the process of obtaining
approval for tool use, for installing approved
tools, and for withdrawing tools?
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d. Does the person or persons who have
authority to approve tool use, install tools, and
withdraw tools have adequate knowledge to
make approval decisions in such a way that
safety will not be compromised?

e. Does the person with this authority have an
enforcement mechanism to ensure that
limitations imposed on tool use are followed
by the development team?

10. Previously Developed or Purchased (PDP)
Software Questions.

a. Does the SSP define the role of the software
safety organization in approving PDP
software?

b. Does the software safety organization have
authority to approve or disapprove the
acquisition or use of PDP software?

c. Does the SSP define an approval process for
obtaining PDP software?

d. Does this approval process include the
following steps?

— Determine the interfaces to and
functionality of the PDP software.

— Identify relevant documents that are
available to the obtaining organization,
and determine their status.

— Determine the conformance of the PDP
software to published specifications.

— Identify the capabilities and limitations of
the PDP software with respect to the
safety requirements of the development
project.

— Using an approved test plan, test the
safety-critical features of the PDP
software in isolation from any other
software.

— Using an approved test plan, test the
safety-critical features of the PDP
software in conjunction with other
software with which it interacts.

— Perform a risk assessment to determine if
the use of the PDP software will result in
undertaking an acceptable level of risk
even if unforeseen hazards result in a
failure.

e. Does the SSP provide a means to ensure that
PDP software will not be used in a safety-
critical product if (1) it cannot be adequately
tested, (2) it presents significant risk of
hazardous failure, (3) it can become unsafe in
the context of its planned use or (4) it

represents significant adverse consequence in
the event of failure?

f. If the answer to the previous question is “no,”
do equivalent analyses, test, and
demonstrations by the vendor of the PDP
software exist that show its adequacy for use
in a safety-critical application?

11. Subcontract Management Questions.

a. Does the SSP provide a means to ensure that
safety-critical software developed by a
subcontractor meets the requirements of the
software safety program?

b. Does the SSP provide a means to ensure that
the subcontractor is capable of developing
safety-critical software?

c. Does the SSP provide a means to monitor the
adherence of the subcontractor to the
requirements of the SSP?

d. Does the SSP provide a process for assigning
responsibility for, and tracking the status of,
unresolved hazards identified or impacting the
subcontractor.

e. Is the subcontractor required to prepare and
implement a SSP that is consistent with this
SSP, and obey it?

12. Process Certification Questions. (This applies only
if the software product is to be certified.)

a. Does the SSP provide a method for certifying
that the software product was produced in
accordance with the processes specified in the
SSP?

13. Follow-Through Questions.

a. Does evidence exist at each audit that the SSP
is being followed?

14. Safety Analysis Questions. Assessment questions
relating to safety analyses are discussed below, in
sections 4.2.2, 4.3.3, 4.4.2, 4.5.2, 4.6.1, and 4.7.1.

4.1.6.  Software Development Plan

The Software Development Plan is the plan that guides
the technical aspects of the development project. It will
specify the life cycle that will be used, and the various
technical activities that take place during that life
cycle. Methods, tools, and techniques that are required
in order to perform the technical activities will be
identified.

Without a development plan, there is likely to be
confusion about when the various technical
development activities will take place and how they



Section 4. Recommendations

68

will be connected to other development activities. The
probability is high that the different team members will
make different assumptions about the life cycle that is
being used, about what is required for each life cycle
phase, and about what methods, tools, and techniques
are permitted, required, or forbidden.

The differences among the members of the project
technical team can result in a confused, inconsistent,
and incomplete software product whose safety cannot
be assured, and may not be determinable.

4.1.6.1.  Recommendation

A safety-related project should have a Software
Development Plan. The plan should describe the
processes to take place during the development life
cycle, and should describe the methods, tools, and
techniques that will be used to carry out the
development processes. Detailed requirements for a
Software Development Plan are provided in Section
3.1.6. The plan should be under configuration control.

4.1.6.2.  Guideline

The Software Development Plan may be organized as
shown in Figure 3-8.

4.1.6.3.  Assessment Questions

1. Life Cycle Process Questions.

a. Is a software life cycle defined?

b. Are the defined life cycle processes sufficient
to provide confidence that a safe and adequate
product will be produced?

c. Are the inputs and outputs defined for each
life cycle process?

d. Is the source of each life cycle process input
specified?

e. Is the destination of each life cycle process
output specified?

f. Does each life cycle phase require a safety
analysis?

g. Does each life cycle phase include a
requirement for an audit at the end of the
phase?

2. Methods, Tools, and Techniques Questions.

a. Are methods specified for each life cycle
phase?

b. Is an automated or semi-automated
requirements tracking tool specified?

c. Are formal requirements and design and
implementation methods required?

d. Is one specific programming language
required?

e. If more than one language is permitted, does
the plan specify a method for choosing which
language to use for each program module?
Does the plan give a technical justification for
permitting more than one programming
language to be used?

f. Does the plan specify what computers,
compilers, libraries, and linkers will be used
in the software development?

g. Is a programming style guide specified?

3. Standards Questions.

a. Are the technical standards that will be
followed listed in the plan?

4. Schedule Questions.

a. Are the technical milestones listed in the
plan?

b. Are the milestones consistent with the
schedule given in the SPMP?

5. Technical Documentation Questions.

a. Are the technical documents that must be
produced listed?

b. Are these documents consistent with those
listed in the SPMP?

c. Is a principal author listed for each document?

d. Are milestones, baselines, reviews, and sign-
offs listed for each document?

6. Follow-Through Questions.

a. Does evidence exist at each audit that the
Software Development Plan is being
followed?

4.1.7.  Software Integration Plan

The Software Integration Plan describes the general
strategy for integrating the software modules together
into one or more programs, and integrating those
programs with the hardware.

Without a Software Integration Plan, it is possible that
the complete computer system will lack important
elements, or that some integration steps will be
omitted.
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4.1.7.1.  Recommendation

A safety-related software project should have a
Software Integration Plan. The size, scope, and
contents of this plan should be appropriate to the size,
complexity, and safety-critical nature of the project.
Detailed requirements for a Software Integration Plan
are provided in Section 3.1.7. The plan should be
under configuration control.

4.1.7.2.  Guideline

The Software Integration Plan may be organized as
shown in Figure 3.9.

4.1.7.3.  Assessment Questions

1. Integration Process Questions.

a. Does the Integration Plan specify the levels of
integration required? Is this consistent with
the software design specification?

b. Does the Integration Plan specify what
objects will be included at each level? These
may include:

— Hardware.

— Software.

— Instrumentation.

— Data.

c. Does the Integration Plan describe each step
of the integration process?

d. Does the Integration Plan describe the
integration strategy to be used for each
integration step?

2. Marginal Conditions Questions.

a. Does the Integration Plan describe the
environment that will be used to perform and
test each integration step?

b. Are software and hardware tools that will be
used to integrate the computer system listed
and described?

c. Is there a priority-based list of the various
integration steps?

d. Was a risk analysis performed?

e. If risks were identified, are preventive
measures identified to avoid or lessen the
risks?

3. Integration Organization Questions.

a. Are the integration steps ordered in time?

b. Are personnel who will be involved in the
integration activity listed?

c. Is this list up to date?

d. Does a mechanism exist to keep the list up-to-
date?

4. Integration Procedure Questions.

a. Are the products of each integration step
known?

b. Are there complete instructions on how to
carry out each integration step?

c. Is there a contingency plan in case the
integration fails?

d. Is there a requirement that the completed
product be placed under configuration
control?

e. Is there a procedure for delivering the product
to the configuration management
organization?

f. Is there a procedure for delivering the product
to the V&V organization for integration
testing?

5. Follow-Through Questions.

a. Was the Integration Plan followed?

4.1.8.  Software Installation Plan

The Software Installation Plan governs the process of
installing the completed software product into the
production environment. There may be a considerable
delay between the time the software product is finished
and the time it is delivered to the utility for installation.

Without an Installation Plan, the installation may be
performed incorrectly, which may remain undetected
until an emergency is encountered. If there is a long
delay between the completion of the development and
the delivery of the software to the utility, the
development people who know how to install the
software may no longer be available.

4.1.8.1.  Recommendation

A safety-related software project should have a
Software Installation Plan. The size, scope, and
contents of this plan should be appropriate to the size,
complexity, and safety-critical nature of the project.
Detailed requirements for a Software Installation Plan
are provided in Section 3.1.8. The plan should be
under configuration control.

4.1.8.2.  Guideline

The Software Installation Plan may be organized as
shown in Figure 3-10.
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4.1.8.3.  Assessment Questions

1. Installation Environment Questions.

a. Is the environment within which the software
will operate fully described?

2. Installation Package Questions.

a. Are materials that are required for a
successful integration listed?

3. Installation Procedures Questions.

a. Does a step-by-step procedure exist for
installing the computer system in the
operational environment?

b. Is this procedure complete?

c. Does each step describe what installation
items are required, and what is to be done
with each installation item?

d. Is the expected results from each installation
step described? That is, how can the installer
know that a step has been successfully
completed?

e. Are known installation error conditions
described, and are recovery procedures fully
described?

4. Follow-Through Questions.

a. Was the Installation Plan fully tested?

4.1.9.  Software Maintenance Plan

The Software Maintenance Plan controls the process of
making changes to the completed software product.
There may be a considerable delay between the
completion of the development project and changing
the product. An organization other than the
development organization, termed the maintenance
organization here, may actually do the maintenance.

Without a Maintenance Plan, it is not easy to know
how the product may be changed, and what procedures
are required in order to make changes. Inconsistencies
and faults may be inserted into the product during
maintenance changes, and this may not become known
until the software needs to react to an emergency. In
the worst case, maintenance that is carried out in order
to improve the reliability of the software product may
actually lessen its reliability.

4.1.9.1.  Recommendation

A safety-related software project should have a
Software Maintenance Plan. The size, scope, and
contents of this plan should be appropriate to the size,

complexity, and safety-critical nature of the project.
The Plan should assume that maintenance will be
carried out by some organization other than the
development organization, and that development
personnel will not be available to answer questions.
Detailed requirements for a Software Maintenance
Plan are provided in Section 3.1.9. The plan should be
under configuration control.

4.1.9.2.  Guideline

The Software Maintenance Plan may be organized as
shown in Figure 3-11.

4.1.9.3.  Assessment Questions

1. Failure Reporting Questions.

a. Does a procedure exist for collecting
operational failure data from the utilities that
are using the software product?

b. Does this procedure ensure that operational
failures are documented?

c. Does this procedure ensure that failure reports
are delivered to the maintenance
organization?

d. Does the maintenance organization have a
procedure to ensure that failure reports are
maintained under configuration control?

e. Does the maintenance organization have a
procedure to ensure that each failure report is
assigned to one individual who is responsible
for analyzing the failure and determining the
underlying fault that caused the failure?

f. Can the maintenance organization
management and the assessors always
discover the status of each failure report?

2. Fault Correction Questions.

a. Does the maintenance organization have a
procedure in place to ensure that faults are
corrected, or determined not to require
correction?

b. Does this procedure ensure that the
documentation related to the fault will be
corrected, if this is necessary?

c. If the fault does not require correction, are the
reasons for this fully documented?

d. If the fault does not require correction, was a
risk analysis performed to be sure that the
fault cannot affect safety in any way?

e. Does the procedure require that acceptance
test cases be created to test for the previously-
undetected fault?
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f. Does the procedure require that regression
testing take place before a new release of the
software is created?

3. Re-Release Questions.

a. Do procedures exist to build and test new
releases of the software?

b. Do these procedures identify the events that
may trigger the creation of a new release?

c. Do these procedures require that the new
release be fully tested before release to the
utilities?

d. Is the re-installation procedure fully
documented?

4. Follow-Through Questions.

a. Is there evidence, during periodic operational
audits, that maintenance procedures are being
followed by the utility and the maintenance
organization?

4.2.  Requirements Activities

The activities associated with the requirements stage
result in a complete description of what the software
system must accomplish as part of the reactor
protection system.

There are a number of risks to not documenting the
software requirements. Some requirements might be
omitted from the design and implementation. Some
requirements might be misunderstood, or interpreted
differently by different members of the development
team. Some hazards might not be covered by the
requirements.

If a particular requirement is omitted, but is necessary
to the design, then the designers or programmers are
likely to explicitly or implicitly invent a requirement.
An example of this is a missing timing requirement—
say, that a pump must be turned on within two seconds
of a particular signal being received from a sensor. If
this requirement is not specified, the programmer
might implicitly assume that there is no real timing
issue here, and write the code in such a way that it
takes five seconds to start the pump. This would be
unacceptable, but would still meet the written
requirement.

4.2.1.  Software Requirements
Specification

The Software Requirements Specification (SRS)
documents the software requirements. These come

from the protection system design and the protection
system hazard analysis.

4.2.1.1.  Recommendation

An SRS should be written for a reactor protection
computer system. It should be correct, consistent,
unambiguous, verifiable, and auditable. Each
requirement should be separately identified. Each
requirement should be traceable to the overall system
design. Detailed requirements for a SRS are provided
in Section 3.2.1.

4.2.1.2.  Guideline

The SRS may be organized as shown in Figure 3-12. If
available, an automated or semi-automated
requirements tracking system should be used so that
the software requirements can be traced through the
design, implementation, integration, and validation
stages of the development project. The use of a CASE
tool to document the requirements is recommended.
The use of a formal mathematics-based requirements
specification language is recommended for the
functional, performance, reliability, and security
requirements.

4.2.1.3.  Assessment Questions

In addition to the list of questions given here, the
assessor may wish to consult other lists. In particular,
IEC 880, Appendix A, contains a list of requirements
characteristics, and Redmill 1989 contains assessment
questions.

1. User Characteristics Questions.

a. Is each category of user identified in the SRS?

b. Is the expected experience level of each
category of user defined?

c. Are the training requirements for each
category of user defined?

2. General Constraint Questions.

a. Are known legal restrictions placed on the
software development either described fully
in the SRS, or referenced in the SRS?

b. Are known hardware limitations described in
the SRS?

c. Are the SRS audit requirements specified?

d. If special support software is required (such
as operating systems, compilers,
programming languages, or libraries), is the
support software fully described?
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e. Are any required communications protocols
defined?

f. Are the critical safety considerations listed?

g. Are the critical security considerations listed?

3. Assumptions and Dependency Questions.

a. Do any assumptions exist that are not listed in
the SRS?

4. Impact Questions.

a. If changes are required to existing hardware
or buildings, are these documented in the
SRS?

b. If the system described in the SRS must be
used with an existing system, are any required
changes to that existing system fully
documented?

c. If the system will be deployed in an existing
reactor, are known organizational and
operational impacts described?

5. Functional Requirement Questions.

a. Are the functional requirements individually
identified?

b. Is each requirement unambiguously stated?

c. Do the functional requirements, taken as a
whole, completely specify what the software
must do?

d. Do the functional requirements specify what
the software must     not    do?

e. Are the functional requirements, taken as a
whole, mutually consistent?

f. Is each functional requirement verifiable,
either through inspection or testing of the
completed software product?

g. Can each requirement imposed by the
protection system design be traced to a
software requirement?

h. Are the functional requirements complete?

6. Operator Interface Questions.

a. Is every interaction between an operator and
the software system fully defined?

b. Are requirements for control panel and
display layouts described?

c. Are requirements for human reactions to
software-generated messages described,
including the amount of time available for
making decisions?

d. Are error messages described, with corrective
actions that should be taken?

7. Instrumentation Interface Questions.

a. Is the possible input from each sensor fully
described? This can include:

— Type of sensor (analog, digital).

— Possible range of values.

— Units of measurement.

— Resolution of measurement.

— Error bounds on measurements for the
range of measurement.

— Instrument calibration.

— Conversion algorithms—analog/digital or
physical units.

b. Is the possible output to each actuator fully
described? This can include:

— Type of actuator (analog, digital).

— Possible range of values and units.

— Units of measurement.

— Resolution of measurement, if analog.

— Calibration requirements.

— Conversion algorithms.

— Any error responses.

8. Computer System Interface Questions. (Applies
only if the protection system software must
communicate with other software systems.)

a. Are the interfaces between software systems
fully defined?

b. Is the form of each interface described—
subroutine call, remote procedure call,
communication channel?

c. Is each interface message format and content
defined?

d. Is the transmission method and medium
defined for each message?

e. Are error detection methods defined for
communication lines?

f. Are communication protocols defined?

9. Performance Requirements Questions.

a. Are the static performance requirements fully
described?

b. Are the protection system timing
requirements included in the SRS?

c. Are the timing requirements specified
numerically?

d. Are timing requirements expressed for each
mode of operation?

e. Are the performance requirements
individually identified?

f. Are the performance requirements, taken as a
whole, mutually consistent?
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g. Is each performance requirement testable?

10. Reliability and Safety Questions.

a. Is each reliability and safety requirement
individually identified?

b. Can each hazard identified in the system
hazard analysis be traced to one or more
software requirements that will prevent,
contain, or mitigate the hazard?

c. Are backup, restart, and recovery
requirements fully defined?

d. If the software must continue to operate in the
presence of faults, are the fault tolerance
requirements fully defined?

e. Are reliability and safety requirements
specified for each possible mode of
operation?

f. Are reliability requirements specified
numerically?

g. If the software is required to diagnose
hardware or software failures, are the classes
of failures that will be detected identified?

h. Is the required response to any identified
hardware or software failure described?

i. If the software is required to recover from
hardware or software failures, are the
recovery requirements fully described?

j. Are the reliability and safety requirements,
taken as a whole, mutually consistent?

k. Is each reliability and safety requirement
verifiable, either through inspection, analysis
or testing of the completed software product?

11. Security Questions.

a. Are the access restrictions imposed on
operators, managers, and other personnel fully
defined?

b. Do requirements exist to prevent unauthorized
personnel from interacting with the software
system?

c. Do requirements exist to prevent unauthorized
changes to the software system?

d. Are the security requirements individually
identified?

e. Can each security requirement be verified,
either through inspection, analysis or test of
the completed software product?

f. Are the security requirements, taken as a
whole, mutually consistent?

4.2.2.  Requirements Safety Analysis

The purpose of the safety analysis is to identify any
errors or deficiencies that could contribute to a hazard
and to identify system safety considerations not
addressed in the SRS.

The risk of not performing a safety analysis is that
some hazards may be overlooked in the SRS, and that
additional hazards may be added.

4.2.2.1.  Recommendation

A Requirements Safety Analysis should be performed
and documented. The analysis should determine which
software requirements are critical to system safety, that
all safety requirements imposed by the protection
system design have been correctly addressed in the
SRS, and that no additional hazards have been created
by the requirements specification.

4.2.2.2.  Guideline

The four analyses recommended in Section 3.2.2 may
be performed.

4.2.2.3.  Assessment Questions

1. General Question.

a. Does the safety analysis present a convincing
argument that the system safety requirements
are correctly included in the SRS, and that no
new hazards have been introduced?

2. Criticality Questions.

a. Have the requirements that can affect safety
been identified?

b. Is there convincing evidence that the
remaining requirements (if any) have no
effect on safety?

3. Requirements Tracing Questions.

a. Can each system safety requirement be traced
to one or more software requirements?

b. Can each software requirement be traced to
one or more system requirements?

c. Is there a requirement that the software not
execute any unintended function? (Note: this
may be very difficult to verify.)

4. Specification Questions.

a. Is there convincing evidence that there are no
missing or inconsistently specified functions?
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b. Is there convincing evidence that there are no
incorrect, missing, or inconsistent input or
output specifications?

c. Can timing and sizing requirements be met
under normal, off-normal, and emergency
operating conditions?

4.3.  Design Activities

The software design activities translate the software
requirements specifications into a hardware/software
architecture specification and a software design
specification.

The primary risks of not creating and documenting a
formal software design are that it may be impossible to
be sure that all requirements have been implemented in
the design, and that no design elements exist that are
not required. Either of these cases can create a hazard.

4.3.1.  Hardware/Software Architecture
Specification

The design architecture will show a hardware
architecture, a software architecture, and a mapping
between them. The hardware architecture shows the
various hardware devices and the ways in which they
are connected. The software architecture shows the
executable software processes and logical
communication paths between them. The mapping
shows which processes operate in which hardware
devices, and how the logical communication paths are
implemented in the hardware communication paths.

It may happen that the design architecture cannot be
completed until the software design, hardware design,
and system design have been completed. The relative
timing and overlap among these design descriptions is
not specified here; that is the developer’s
responsibility.

4.3.1.1.  Recommendation

A hardware/software architecture description should be
prepared. It should be correct, consistent,
unambiguous, verifiable, testable, and implementable.
All major hardware devices and all major software
processes should be included in the description. A
mapping of software to hardware should be provided.
A mapping of logical communication paths to physical
communication paths should be provided.

4.3.1.2.  Assessment Questions

1. Hardware Questions.

a. Are known major hardware elements shown
in the design architecture? This includes:

— Computers.

— File systems.

— Sensors and actuators.

— Terminals.

— Communication networks.

b. Does the design architecture show how the
various hardware elements are connected
together?

2. Software Questions.

a. Are known independent software elements
shown in the design architecture? This
includes:

— Processes, which perform computations.

— Files and databases, which store
information.

— Input and output messages, which receive
and transmit information.

— Screen, which display information.

— Communication, which moves
information among processes, files and
databases, input and output channels, and
screens.

b. Does the design architecture show how the
various software elements are logically
connected together?

3. Software to Hardware Mapping Questions.

a. Does the design architecture show how each
software element is mapped to a hardware
element?

4.3.2.  Software Design Specification

The Software Design Specification shows exactly how
the software requirements are implemented in the
software modules and programs.

4.3.2.1.  Recommendation

A formal software design specification should be
developed and documented. It should be correct,
complete, internally consistent, consistent with the
software requirements, unambiguous, verifiable,
testable, and implementable. Each design element
should be traceable to one or more specific
requirements, and each software requirement should be
traceable to one or more design elements.
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4.3.2.2.  Guideline

The use of a CASE system to document the design and
the use of a formal mathematics-based design
specification language is recommended. The use of an
automated or semi-automated requirements tracking
system is also recommended so that the software
requirements can be traced through the design to the
implementation stage of the development project.

4.3.2.3.  Assessment Questions

In addition to the list of questions given here, the
assessor may wish to consult other lists. In particular,
IEC 880, Appendix B, contains a list of design
characteristics, and Redmill 1989 contains assessment
questions.

Some of the assessment questions listed here should
also be asked of the implemented system (code and
data).

1. General Questions.

a. Can every requirement given in the SRS be
traced to one or more specific design elements
that implement the requirement?

b. Can every design element be traced to one or
more specific requirements that the design
element implements?

c. Is there sufficient evidence to demonstrate
that there are no unintended functions in the
design?

d. Is the design complete, consistent, correct,
unambiguous, and simple?

2. Software Structure Questions.

a. Are the static and dynamic structures simple,
with minimal connections between design
elements?

b. Is the software structure hierarchical in
nature?

c. If stepwise refinement is used to create the
software structure, is each level of the
refinement complete, internally consistent,
and consistent with the immediately higher
level (if any)?

d. Is the design such that safety-critical
functions are separated from normal operating
functions, with well-defined interfaces
between them?

3. Design Element Questions.

a. If any of the following concepts are used in
the design, is adequate justification given for
their use?

— Floating point arithmetic.

— Recursion.

— Interrupts, except for periodic timer
interrupts.

— Multi-processing on a single processor.

— Dynamic memory management.

— Event-driven communications between
processes.

b. If more than one formal design method is
used, are they mutually consistent?

c. Is the input to each modules checked for
validity?

4.3.3.  Design Safety Analysis

The purpose of the safety analysis is to identify any
errors or deficiencies in the design that could
contribute to a hazard.

The risk of not performing a safety analysis is that
some hazards that were identified in the requirements
specification may be overlooked in the design, and that
additional hazards may be added.

4.3.3.1.  Recommendation

A Design Safety Analysis should be performed and
documented. The analysis should determine which
software design elements are critical to system safety,
that all safety requirements imposed by the protection
system design have been correctly implemented in the
design, and that no additional hazards have been
created by the design specification.

4.3.3.2.  Guideline

The five analyses recommended in Section 3.3.3 may
be performed.

4.3.3.3.  Assessment Questions

Some of the assessment questions listed here should
also be asked of the implemented system (code and
data).

1. Logic Questions.

a. Do the equations and algorithms in the
software design correctly implement the
safety-critical requirements?
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b. Does the control logic on the software design
completely and correctly implement the
safety-critical requirements?

c. Does the control logic correctly implement
error handling, off-normal processing, and
emergency processing requirements?

d. Is the design logic such that design elements
that are not considered safety critical cannot
adversely affect the operation of the safety-
critical design elements?

2. Data Questions.

a. Are safety-critical data items identified, with
their types, units, ranges, and error bounds?

b. Is it known what design elements can change
each safety-critical data item?

c. Is there convincing evidence that no safety-
critical data item can have its value changed
in an unanticipated manner, or by an
unanticipated design element?

d. Is there convincing evidence that no interrupt
will change the value of a safety-critical data
item in an unanticipated manner?

3. Interface Questions.

a. Are the control linkages between design
elements correctly and consistently designed?

b. Has it been demonstrated that all parameters
passed between design elements are
consistent in type, structure, physical units,
and direction (input/output/input-output)?

c. Is there convincing evidence that no safety-
critical data item is used before being
initialized?

4. Constraint Questions.

a. Have the design constraints listed in the
requirements specification been followed in
the design?

b. Have known external limitations on the
design been recognized and included in the
design? This includes hardware limitations,
instrumentation limitations, operation of the
protection system equipment, physical laws,
and similar matters.

c. Will the design meet the timing and sizing
requirements?

d. Will equations and algorithms work across
the complete range of input data item values?

e. Will equations and algorithms provide
sufficient accuracy and response times as
specified in the requirements specification?

4.4.  Implementation Activities

Implementation consists of the translation of the
completed software design into code and data stores.
The risks involved in writing the code are that the
design may not be correctly implemented in the code,
or coding errors may add additional hazards. Most of
the assessment effort on implementation products
involves code walk-throughs, inspections, and testing.
Those topics are covered in Barter 1993 and Thomas
1993.

4.4.1.  Code Listings

Coding may require the use of programming
languages, database design languages, screen design
languages, and other languages. The language level
may vary from assembler to high level block
languages.

4.4.1.1.  Guideline

Assembly language should not be used in a safety-
critical application without convincing justification.
The programming language should be block-structured
and strongly typed.

4.4.1.2.  Guideline

Certain coding practices should not be used in a safety-
critical application without convincing justification.
This justification should substantiate that the use of the
coding practice in a particular instance is safer than not
using it. For example, not using the practice may, in
some cases, require much additional coding, or obscure
module structure, or increased probability of coding
errors for some other reason. The following list of
practices is indicative, not exhaustive. The ordering of
the list contains no implication of severity.

• Floating point arithmetic.

• Recursion.

• Interrupts, except for periodic timer interrupts.

• Use of pointers and indirect addressing.

• Event driven communications.

• Time-slicing by the operating system.

• Dynamic memory management.

• Swapping of code into and out of memory.

• Loops that cannot guarantee termination.
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• Storing into an array in such a way that the index
cannot be guaranteed to fall within the index
bounds of the array.

• Unconditional branches.

• Branches into loops or modules.

• Branching out of loops other than to the statement
following the end of the loop, or to error
processing.

• Nesting ‘if’ statements more than 3-4 levels deep.

• Use of default conditions in a ‘case’ statement.

• Use of multiple entry points in a subroutine.

• Overloading of variables (using the same variable
for more than one purpose).

• Dynamic instruction modification.

• Implicit typing of variables.

• Use of ‘equivalence’ statements in FORTRAN.

• Modules with side effects other than output to an
actuator, terminal or file.

• Passing procedures as parameters to subroutines.

• Testing floating point numbers for exact equality.

4.4.1.3.  Assessment Questions

Some assessment questions given in Section 4.3.2.3
also apply to the code. Additional questions will arise
through the V&V activity. No additional questions are
suggested here.

4.4.2.  Code Safety Analysis

The purpose of the safety analysis is to identify any
errors or deficiencies in the code that could contribute
to a hazard.

The risk of not performing a safety analysis is that
some hazards that were identified in the requirements
specification and covered by the design may be
overlooked in the coding activity, and that additional
hazards may be added.

4.4.2.1.  Recommendation

A Code Safety Analysis should be performed and
documented. The analysis should determine that the
code correctly implements the software design, that the
code does not violate any safety requirements and that
no additional hazards have been created by the coding
activity.

4.4.2.2.  Guideline

The five analyses recommended in Section 3.3.3 may
be performed.

4.4.2.3.  Assessment Questions

In addition to the questions listed here, the questions
given above in Section 4.3.4.3 should be considered as
well, as far as they apply to the code.

1. Logic Questions.

a. Does the code logic correctly implement the
safety-critical design criteria?

b. Are design equations and algorithms
corrected implemented in the code?

c. Does the code correctly implement the error
handling design?

d. Does the code correctly implement the off-
normal and emergency operations design?

e. Is there convincing evidence that no code
considered non-critical can adversely impact
the function, timing, and reliability of the
safety-critical code?

f. Is there convincing evidence that any
interrupts that may be included in the code
will not take precedence over or prevent the
execution of safety-critical code modules?

2. Data Questions.

a. Are the definition and use of data items in the
code consistent with the software design?

b. Is each data item in the code explicitly typed?

c. Is there a convincing argument that no safety-
critical data item can have its value changed
in an unanticipated manner, or by an
unanticipated module?

d. Is there a convincing argument that no
interrupt can destroy safety-critical data
items?

3. Interface Questions.

a. Have parameters that were passed between
code modules been analyzed for consistency,
including typing, structure, physical units, and
number and order of parameters?

b. Is the direction of parameters consistent, both
internally in the code and externally with the
software design?

c. Have external interfaces been evaluated for
correct format of messages, content, timing,
and consistency with the Software Interface
Design Description?



Section 4. Recommendations

78

4. Constraint Questions.

a. Is there adequate memory space in the target
computer for the safety-critical code and data
structures? This should consider normal, off-
normal, and emergency operating modes.

b. Is the actual timing of events in the code
consistent with the timing analysis performed
as part of the software design?

c. Can timing requirements actually be met?

d. Is there a convincing argument that the target
computer will not be halted if an error occurs,
unless such halting cannot impose a hazard?

e. Is it known what will happen if actual input
values exceed the design specification in
terms of values and frequency of occurrence?

4.5.  Integration Activities

Integration consists of the activities that combine the
various software and hardware components into a
single system. The risk to an incorrect integration
activity is that the system will not operate as intended,
and that this will not be discovered until actual
operation, possibly during an emergency.

Verifying that the integration activity has been
successfully completed is part of the V&V inspection,
analysis, and test activities. This is discussed in Barter
1993.

4.5.1.  System Build Documents

The System Build Documents describe precisely how
the system hardware and software components are
combined into an operational system.

4.5.1.1.  Recommendation

A System Build Specification should be written. It
should describe precisely how the system is assembled,
including hardware and software component names
and versions, the location of particular software
components in particular hardware components, the
method by which the hardware components are
connected together and to the sensors, actuators, and
terminals, and the assignment of logical paths
connecting software modules to hardware
communication paths.

4.5.1.2.  Assessment Questions

1. General Questions.

a. Has it been verified that the System Build
Specification actually works to build a correct
system?

b. Is there evidence that the system that is built
and made ready for verification was actually
built in accordance with the build
specification?

4.5.2.  Integration Safety Analysis

The Integration Safety Analysis ensures that no
hazards have been introduced during the integration
activity.

4.5.2.1.  Recommendation

An Integration Safety Analysis should be performed
and documented. The analysis should determine that
the complete system does not violate any safety
requirements and that no additional hazards have been
created by the integration activity.

4.5.2.2.  Assessment Questions

1. General Questions.

a. Is there convincing evidence that the system
meets protection system safety requirements?

b. Is there convincing evidence that the system
does not introduce any new hazards?

4.6.  Validation Activities

Validation consists of the activities that ensure that the
protection computer system, as actually implemented
and integrated, satisfies the original externally-
imposed requirements. This is discussed further in
Barter 1993.

4.6.1.  Validation Safety Analysis

The Validation Safety Analysis examines the entire
system and the process of developing that system to
ensure that system safety requirements have been met
and that no hazards have been introduced at any point
in the development process.

4.6.1.1.  Recommendation

A Validation Safety Analysis should be performed and
documented. The analysis should determine that the
complete system does not violate any safety
requirements and that no additional hazards have been
created during the development process.
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4.6.1.2.  Assessment Questions

1. General Questions.

a. Is there convincing evidence that the
completed protection computer system meets
protection system safety requirements?

b. Is there convincing evidence that no new
hazards were introduced during the
development process?

4.7.  Installation Activities

Installation is the process of moving the complete
system from the developer’s site to the operational site,
possibly after considerable time delays. Only the safety
analysis is discussed here.

4.7.1.  Installation Safety Analysis

This final safety analysis verifies that the installed
system operates correctly.

4.7.1.1.  Recommendation

An Installation Safety Analysis should be performed
and documented. The analysis should verify that the
system was installed correctly, that it operates
correctly, that the installed system does not violate any
protection system safety requirements, and that the
installed system does not introduce any new hazards.

4.7.1.2.  Assessment Questions

1. General Questions.

a. Has the hardware been installed correctly?

b. Are hardware communication paths installed
correctly?

c. Is the software installed correctly?

d. Have configuration tables been correctly
initialized, if such are used?

e. Are operating documents present, correct,
complete, and consistent?
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APPENDIX:  TECHNICAL BACKGROUND

This appendix contains information on certain
technical issues that are pertinent to this report. This
appendix begins with a discussion of two prominent
techniques that are occasionally recommended for
software fault tolerance. This is followed by a section
describing some of the modeling techniques that may
be used to model reliability in general, and software
reliability in particular. The final section briefly
discusses software reliability growth models.

A.1.  Software Fault Tolerance
Techniques

Anderson (1985) and Laprie (1985) point out that the
reliability of a computer system is determined by three
different phases. First, one tries to keep faults out of
the system. Second, since some faults will escape this
effort, one tries to identify and eliminate them. Finally,
since neither design nor elimination is perfect, and
since some failures will occur during operation due to
operational faults, one attempts to cope with them once
they appear. There is a useful analogy here to the
security of a bank. Bankers try to keep most robbers
out; stop those that get in the door; and recover the loot
from those that get away. The underlying philosophy is
that of defense in depth.

Fault avoidance is concerned with keeping faults out
of the system. It will involve selecting techniques and
technologies that will help eliminate faults during the
analysis, design, and implementation of a system. This
includes such activities as selecting high-quality,
reliable people to design and implement the system,
selecting high-quality, reliable hardware, and using
formal conservative system design principles in the
software design.

Fault removal techniques are necessary to detect and
eliminate any faults that have survived the fault
avoidance phase. Analysis, review, and testing are the
usual techniques for removing faults from software.
Review and testing principles and procedures are well
known, and are discussed in detail in Barter 1993 and
Thomas 1993.

Fault tolerance is the last line of defense. The intent is
to incorporate techniques that permit the system to
detect faults and avoid failures, or to detect faults and
recover from the resulting errors, or at least to warn the
user that errors exist in the system. Since many

systems designers are unfamiliar with fault tolerance
ideas and techniques, this is discussed in Sections
A.1.1-A.1.3.

In spite of the developer’s best efforts, computer
system failure may occur. If this does happen, the
computer should fail in such a way as to not cause
harm or lose information. This can be called graceful
degradation, or graceful failure, and usually requires
both hardware and software facilities. For example,
sufficient battery power may be provided to permit a
controlled shut-down by the software system.

Of course nothing can be done by the computer system
to overcome some types of failures (such as those
caused by fire, flood, or lightening strikes); other
techniques such as seismic hardening or
Uninterruptible power supplies may be required.

A fault-tolerant computer system requires fault-tolerant
hardware and fault-tolerant software. The former is
considered to be beyond the scope of this report. The
following sources discuss hardware fault tolerance.
The August 1984 and July 1990 issues of IEEE
Computer are both devoted to fault tolerant hardware
systems. Additional material can be found in the
following papers and books listed in the References:
Anderson 1985, Maxion 1987, Nelson 1987, Pradhan
1986 and Siewiorek 1982.

Nelson (1990) points out that the reliability of a system
can be written as

R = Prob[no fault] + Prob[correct action | fault] *
Prob[fault].

The first term represents the probability that the system
is free from fault, and is achieved by high-quality
design and manufacturing. If it is good enough, then
fault tolerance may be unnecessary.

The second term represents the fault tolerance built
into the system. It is the probability that faults may
occur and the system continue to function.

Fault tolerance always has a cost attached, in terms of
development time and money and operating time and
money. This cost must be weighed against the costs of
system failure. (See Berg 1987, Krishna 1987.)
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Operator interaction with a computer system may not
always be correct, so fault tolerance is applicable to
creating a robust man-machine interface. This is
discussed further in Maxion 1986.

This section begins with a brief general discussion of
the use of redundancy in achieving fault tolerance.
This is followed by an outline of the general process of
recovering from software failures. The section ends
with a description of two methods of achieving
software fault tolerance that are frequently mentioned
in the literature. Other commonly-available methods,
such as the use of formal methods in software
specification and design, or exception handling
facilities within a programming language, are not
discussed.

A.1.1.  Fault Tolerance and Redundancy

Fault tolerance is always implemented by some form
of redundancy. Nelson and Carroll (1987) identify four
forms of redundancy; several others have been added
here.

• Hardware redundancy. Extra hardware is used to
achieve some aspects of fault tolerance. In triple
modular redundancy (TMR), for example, three
processors perform the same computation, and the
results are compared. If all agree, it is assumed
that all three processors are operating correctly. If
two agree, it is assumed that the other processor
has failed. This idea can be extended to
communication paths, disk drives, memories,
sensors, and other parts of the hardware system.
The technique cannot compensate for design
errors or for common-mode failures.

• Information redundancy. Redundant bits can be
used to permit both detection and (in some cases)
correction of errors in data or instructions.
Information can also be duplicated by saving the
result of a calculation in two variables, by
maintaining duplicate files, or by redoing
calculations. This can be effective in overcoming
certain types of operational faults, but cannot
overcome errors in the calculation itself. (See also
Ammann 1988.)

• Software redundancy. Extra software can be
provided to assist in detecting and recovering from
failures.

• Computational redundancy. A calculation can be
carried out using several different algorithms, with

the results compared and one chosen that is
deemed most likely to be correct.

• Temporal redundancy. Operations can be repeated
to permit recovery from transient faults. A sensor
can be re-read, a message can be retransmitted, or
a record can be re-read from a disk. This technique
is not useful, of course, if the fault is permanent or
if there are hard real-time constraints.

• Human redundancy. It is possible to require that
two or more individuals independently authorize
action. This is sometimes called a “two-man rule.”

• Mixed redundancy. Combinations of the
techniques just listed can be quite effective in
achieving redundancy. For example, one could
require that hardware, software, and an operator
all agree that a system is not in a hazardous state
before permitting a potentially dangerous
operation to take place.

None of these techniques covers all possible situations,
all have potential flaws, and all have associated costs.
In practice, a variety of techniques must be used, either
at different levels within a system or in different
subsystems (Bihari 1988).

A.1.2.  General Aspects of Recovery

A fault-tolerant computer system must be capable of
recovering from failures (by definition). Since the
failure is just a symptom of one or more underlying
faults that caused one or more errors, this recovery
process must deal with these factors. Note that nothing
is said here about how the techniques are to be
implemented. The operating system, the application
program, or a separate recovery system are among the
possibilities.

The recovery process consists of the following general
steps. Each is discussed further below.

1. Detect the failure.

2. Treat the error.

a. Locate the error.

b. Assess the damage.

c. Recover from the error.

3. Treat the underlying fault.

a. Locate and confine the fault.

b. Diagnosis the fault.

c. Repair and reconfigure the system.

d. Continue normal operation.
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A.1.2.1.  Failure Detection

There are two major classes of failure detection
techniques—off-line detection and on-line detection
(Maxion 1987). The former is generally easier, but
may not be possible if continuous operation of a
system is required.

• Diagnostic programs can be run in an attempt to
detect hardware faults, either periodically or
continuously as a background process.

• Duplication of a calculation can be effective in
detecting a failure. A calculation is performed two
or more times, and the results are compared. Two
CPUs could be used, two communication paths or
two different algorithms. The technique can be
quite effective in many circumstances, although
there are a few potential problems that must be
avoided. Identical failures (caused, for example,
by design faults) often cannot be detected, and
failures in the comparison unit may mask failures
elsewhere or give a spurious indication of failure.

• Error detecting codes can be used to detect failures
and to detect errors caused by failures. Parity
checks, checksums, and cyclic codes are all
applicable. This technique is particularly
applicable to communication lines, memory, and
external file data.

• Watchdog timers can be used to help ensure that a
calculation has completed. The watchdog can be
implemented in hardware or software, but must be
distinct from the operation being controlled. The
latter has a three-step algorithm:

1. Set timer.

2. Carry out operation.

3. Upon successful completion, cancel timer.

If the time period elapses without the cancel, it is
assumed that a failure has occurred, and the timing
process will interrupt the controlled operation.
Examples where this technique proves useful include
detecting a process in an infinite loop, detecting a
process that has aborted prematurely, detecting that no
acknowledgment has been received from the recipient
of a message, and detecting the failure of an I/O event
to complete. In many cases the timer is initialized at
the beginning of a cycle and then reinitialized each
time the cycle is re-started. Thus the time stays on until
some time when, for whatever reason, it isn’t

reinitialized before its time period is exhausted. It then
does off and signals that a failure has occurred.

A.1.2.2.  Error Treatment

There are three aspects to coping with errors once a
failure has occurred: error detection, damage
assessment, and recovery.

1. Error Detection. The success of all fault
tolerance techniques is critically dependent upon
the effectiveness of detecting errors. This activity
is highly system dependent, so it is difficult to
give general rules. The following suggestions are
offered by Anderson (1985).

— Replication Checks. It may be possible to
duplicate a system action. The use of triply-
redundant hardware is an example. A
calculation is carried out by at least three
separate computers and the results are
compared. If one result differs from the other
two, the idiosyncratic computer is assumed to
have failed.

— Timing Checks. If timing constraints are
involved in system actions, it is useful to
check that they are satisfied. For example a
time-out mechanism is frequently used in
process-to-process communications.

— Reversal Checks. A module is a function
from inputs to outputs. If this function is 1-1
(has an inverse) it may be possible to
reproduce the inputs from the outputs and
compare the result to the original inputs.

— Coding Checks. Parity checks, checksums,
cyclic redundancy codes, and other schemes
can be used to detect data corruption. This is
particularly important for communication
lines and permanent file storage.

— Reasonableness Checks. In many cases the
results of a calculation must fall within a
certain range in order to be valid. While such
checks cannot guarantee correct results, they
can certainly reduce the probability of
undetected failures.

— Structural Checks. In a network of
cooperating processes it is frequently useful
to perform periodic checks to see which
processes are still running.

2. Damage Assessment. Once an error has been
detected it is necessary to discover the full extent
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of the damage. Calculations carried out using a
latent error can spread the damage quite widely.
Design techniques can be used to confine the
effect of an error, and are therefore quite useful.
One method is to carefully control the flow of
information among the various components of the
system. Note that these methods are almost
impossible to retrofit to a system; this issue must
be considered at the design stage.

3. Error Recovery. The final step is to eliminate all
errors from the system state. This is done by some
form of error recovery action. Two general
approaches are available.

— Forward Error Recovery. In a few cases a
sufficient amount of correct state is available
to permit the errors to be eliminated. This is
quite system dependent. If a calculation was
performed on incorrect input (spreading the
damage), and the correct input can be
recovered, the calculation can simply be
redone. Forward error recovery can be quite
cost effective when it is possible.

— Backward Error Recovery. If forward error
recovery is not possible, one must restore the
system to a prior state that is known to be
correct. There are three general categories of
such techniques, and they are usually used in
combination.

* Checkpointing. All (or a part) of the
correct system state is saved, usually in a
disk file.

* Audit Trails. All changes that are made
to the system state are kept in a
transaction log. If the system fails it can
be reset to the latest checkpoint (or to the
initial correct state), and the audit trail
can be used to bring the system state
forward to a correct current state. This
technique is frequently used in database
management systems (Date 1983) and
can also be quite effective in application
systems. Careful planning is necessary.

* Recovery Cache. Instead of logging
every change to a system, it is possible to
incrementally copy only those portions of
the system state that are changed. The
system can be restored only to the latest
incremental copy unless an audit trail is
also kept. Without the audit trail all
transactions since the latest incremental

copy are lost. In some cases this is
sufficient.

* Restarting. When all else fails the
system can be re-started from an initial
known state.

— Error Compensation. This technique is
possible if the erroneous state contains
enough redundancy to enable the delivery of
an error-free service from the erroneous
(internal) state.

A.1.2.3.  Fault Treatment

It may be possible to continue operation after error
recovery. Although transient faults can possibly be
ignored, nontransient faults must be treated sooner or
later. Nelson and Carroll (1987) suggest four stages to
fault treatment.

1. Fault Location and Confinement. One begins by
isolating the fault by means of diagnostic checking
(or some other technique). Whether or not the
fault is immediately repaired after it has been
located, it is generally wise to limit its effects as
much as possible so that the remainder of the
system can be protected. Where high availability
is required, the component containing the fault
may be replaced so that operation may continue;
in such cases the next two steps take place off-
line.

2. Fault Diagnosis. Once the fault has been isolated
it will be necessary to uncover the exact cause.
This could be a hardware operational fault, a
software bug, a human mistake, or something else.
The technique to use depends on the source of the
fault.

3. System Repair and Reconfiguration. If there is
sufficient redundancy this can take place during
(possibly degraded) operation. Otherwise the
system must be stopped and repaired or
reconfigured.

4. Continued Service. The repaired system is
restored to a working condition and restarted.

A.1.3.  Software Fault Tolerance
Techniques

Software can be used to compensate for failures in
other portions of a computer system (such as hardware
or operators) and to tolerate faults in the software
portion of the system. This section is devoted to the
latter problem. The assumption is that faults remain in
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the software despite all the care taken in design,
coding, and testing.

Two techniques are discussed here that have been used
in attempts to achieve software fault tolerance: n-
version programming and recovery blocks. In each
case, the technique is described, advantages and
disadvantages are discussed, and explanations are
given as to how the technique implements the general
recovery process described in the previous section.

It must be recognized that either of these techniques
may actually decrease reliability, due both to the fact
that more software has been written and to the added
complexity of the software system. For example,
suppose a fixed budget is available for testing. If three
algorithms are written instead of one, then it is possible
that only one-third as much testing will be done on
each of the three. It is generally better to create a
software system that is sufficiently simple so the
design and code can be understood by competent
people and declared safe; adding all the layers that are
claimed to add fault tolerance and self-diagnosis may
be self defeating.

Both techniques need watchdog timers to cope with
errors (such as infinite loops) that cause an algorithm
to fail to terminate. Both require a protection
mechanism to avoid those errors caused when an error
in one module corrupts the global state in
unanticipated ways. These may be required in any
case, so may not actually increase costs much.

The two techniques have been compared and analyzed
in a number of articles: Abbott 1990, Arlat 1990,
Knight 1991, Laprie 1990, Purtilo 1991, and Shimeall
1991.

A.1.3.1.  N-Version Programming Technique

In the n-Version Programming Technique (Pradhan
1986) a program specification is given to n different
programmers (or groups of programmers), who write
the programs independently. Generally n must be at
least 3 (and should be odd). The basic premise is that
the errors that programmers make are independent;
consequently the multiple versions are unlikely to go
wrong in the same way. In execution, all versions are
executed concurrently and voting is used to select the
preferred answer if there is disagreement. Whenever
possible different algorithms and programming
languages are used, in the belief that this will further
reduce the likelihood of common errors. The technique
has been described in a series of papers from UCLA

(Avizenis 1985; Bishop 1985; Kelly 1986; Saglietti
1986; Strigini 1985; Tso 1986).

N-version programming achieves redundancy through
the use of multiple versions. Failures are detected by
comparing the results of the different versions. Error
location is done by assuming that versions whose
results do not “win” the vote contain an error. No
damage can occur so long as each version uses only
local storage, and recovery is automatic. Faults are
assumed to be located in the versions that are in error;
diagnosis and repair must be done off-line.

N-version programming can be used to make decisions
as to a course of action, but cannot be used to
implement an action. That is, one would not want a
motor to be activated by multiple pieces of software
before voting occurs.

The voting mechanism is critical to n-version
programming, since failure here can be much more
serious than failures of the individual versions. Three
types of faults must be considered: faulty
implementation of the voting module, acceptance of
incorrect results, and rejection of correct results.
Brilliant (1989) points out that comparing floating
point calculations in a voting algorithm must be done
very carefully. Knight and Ammann (1991) give a
hypothetical (and plausible) example of a 3-version
system giving three different but acceptable answers,
which would complicate voting.

There are a number of problems with this approach. To
begin with the cost of programming and program
maintenance is multiplied, since several versions are
being written. Errors in the specification will not be
detected (but ambiguities may be easier to find).
Additional design is required to prevent serious errors
in any of the versions from crashing the operating
system, and to synchronize the different tasks in order
to compare results. Code must also be written to do the
comparison. Finally, there is some reason to believe
that programmers do indeed make the same sorts of
mistakes so that the assumption of independence is
incorrect (Knight 1985; Knight 1986; Knight 1990;
Brilliant 1990; Leveson 1990). This point is somewhat
controversial; if it proves to be true, it is a fatal flaw.

Note that specification errors, voting errors,
contamination of shared state data, and non-
independent design and coding errors are all common-
mode failures.
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N-version programming has the potential of increasing
the reliability of some aspects of a program, provided
that development and testing time and funding are
increased to cover the extra costs. However, the
probability of common-mode failures must be factored
into any calculation of increased reliability, and one
should show that the extra time and money couldn't be
better spent improving a single version.

A.1.3.2.  Recovery Block Technique

The Recovery Block Technique uses redundancy in a
different way (Cha 1986; Kim 1989; Pucci 1990). Here
there is just one program, but it incorporates
algorithms to redo code that proves to be in error. The
program consists of three parts. There is a primary
procedure that executes the algorithm. When it has
finished, an acceptance test is executed to judge the
validity of the result. If the result is judged to be valid
that answer is passed back as the correct answer.
However if the acceptance test judges the answer to be
incorrect, an alternative routine is invoked. This
alternative will generally be simpler to code, but is
likely to run slower or use a different algorithm. The
idea can be nested. The effect is to have a program
module structured as follows:

answer = primary algorithm
if answer is valid then return (answer)

else {answer = second algorithm
if answer is valid then return

(answer)
else {answer = third algorithm
.....

}
}

Usually only the first algorithm will be required. One
result of failure is to slow down the program's
execution, so this technique may not always be usable.

In this technique, failures are detected by the
acceptance test. The location of the error is determined
by assuming that an algorithm is defective if the
acceptance test fails for that algorithm. No damage can
occur provided that the defective algorithm uses only
local storage, and recovery is done by trying a different
algorithm. Faults are assumed to be located in the
versions in error; diagnosis and repair must be done
off-line.

Many of the criticisms offered for the n-Version
Programming Technique apply here as well, in one
form or another. The independence assumption among

programmers is not required, but independence of the
various fall-back algorithms and the checking routine
is required. There is an assumption that succeeding
algorithms are more likely to be simpler, and therefore
more likely to be correct; since they are presumably
executed less frequently, this assumption must be
verified.

The critical aspect of this technique is the acceptance
test. It must be possible to distinguish correct from
incorrect results or the technique cannot be used. It
may happen that the acceptance test is as complex as
the algorithm, in which case little may be gained.
Indeed, an alternative algorithm may be the only
available acceptance test, which again leads to n-
version programming.

As discussed for n-version programming, recovery
blocks can be used to decide on a course of action, but
not to implement the action. The problem here, though,
is not one of having multiple pieces of software
attempting to control the same instrument. With
recovery block, the failure of an acceptance test
requires that the system state be returned to its
condition prior to the execution of the block. If
external devices are being controlled, this implies that
they must be returned to their positions prior to the
block, which may not be possible.

Common-mode failures exist here as well:
specification errors, acceptance test errors,
contamination of common state data, and common
design and coding errors. Failures of this type will
invalidate the assumption that the various versions are
independent.

Another problem with recovery block is the time
required to execute the back-up versions. In a hard
real-time system this time may not be available, or
execution timing may not be predictable The developer
must verify that all timing restrictions can be met
under all circumstances.

The conclusion is much the same as for n-version
programming, since the costs and benefits are
approximately the same. There is little reason to
choose one over the other, except that the recovery
block method probably requires less execution time
when errors are not found. This may be balanced by
the increase in execution time when an acceptance test
is failed.
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A.2.  Reliability and Safety Analysis
and Modeling Techniques

Section A.1 presented some ideas for developing
software that must have unusually high reliability. This
section examines a variety of techniques for
understanding the reliability and safety of such
software. These techniques are variously referred to as
“analyses” or “models,” but this distinction is
somewhat pedantic. An analysis (such as fault tree
analysis) is carried out by creating a model (the fault
tree) of a system, and then using that model to
calculate properties of interest, such as reliability.
Likewise, a model (such as a Petri net model) may be
created for a system in order to analyze some property
(such as reachability).

Many techniques have been created for analyzing the
reliability and safety of physical systems. Their
extension to software is somewhat problematical for
two reasons. First, software faults are design faults,
while most well-known analysis techniques are
directed primarily at operational faults (equipment
breakage or human error). Second, software is
generally much more complex than physical systems,
so the methods may be very difficult to use when
applied to software. However, the techniques are well
understood, and there appear to be few alternatives.

The discussion begins by examining an elementary
technique known as reliability block diagrams. It then
moves to three classical techniques for analyzing
system safety. Many models can be converted to
Markov models, so this is discussed next. The section
ends with an introduction to Petri nets, a modeling
technique specifically developed for software. The
descriptions given here are necessarily simplified, and
the reader will need to consult the references given in
each section for more detail. Many more techniques
are available; see Bishop 1990 for brief summaries of
many of them. One interesting approach not discussed
here is that of formal proofs of correctness; see
Atkinson 1991, Bishop 1990, Bloomfield 1991, and
Linger 1979 for more information.

Safety analysis must be done for a system as a whole,
not just for software. The word system includes
computer hardware, software and operators; equipment
being controlled by the computer system; system
operators, users, and customers; other equipment; and
(in some cases) the environment within which the
system operates. This implies that software safety
analysis will be only a portion of a larger safety

analysis, and must be performed as part of that larger
analysis.

The three techniques considered in Sections A.2.2
through A.2.4 all involve hazards, triggering events,
and system components. They differ in emphasis, and
all are generally required, in order to reduce the
chances of missing important aspects of the system.

Fault tree analysis (FTA) and event tree analysis
(ETA) were developed for use in the aerospace
industry during the 1950s and 1960s. The techniques
are complementary. FTA starts by assuming that some
undesirable event (such as a particular type of
accident) has occurred, and works backward
attempting to uncover potential causes of the event.
ETA assumes that an initiating event (such as a fault)
has occurred and works forward, tracing the effects of
that event. In both cases, the intent is to calculate the
probability that consequences such as loss of life or
property damage may occur. Failure modes and effects
analysis (FMEA) starts with the system components
and investigates the effect of a failed component on the
rest of the system. FMEA and ETA are related.

Modeling generally requires computer assistance. A
survey of software tools that can be used to evaluate
reliability, availability and serviceability can be found
in Johnson 1988. See also Bavuso 1987, Berg 1986,
Feo 1986, Goyal 1986, Mainini 1990, Mulazzani 1985,
Sahner 1987, Sahner 1987a, and Stiffler 1986.

A.2.1.  Reliability Block Diagrams

Reliability block diagrams are easy to construct and
analyze, and are completely adequate for many cases
involving the operational reliability of simple systems.
For a more complete discussion, see Bishop 1990,
Chae 1986, Dhillon 1983, Frankel 1984, Kim 1989,
Lloyd 1977, Pages 1986, and Phillis 1986.

Consider a system S composed of n components

1C , 2C ,..., nC . Each component will continue to

operate until it fails; repair is not carried out. The

question is: what is the reliability of the entire system?

Suppose that component jC  has constant failure rate

λ j  (and, therefore, a mttf of 1 / λ j ). The reliability of

the component at time t is given by Rj (t) = e
−λ j t . For

example, a computer system might consist of a CPU

with a failure rate of .23 (per thousand hours), a

memory with a failure rate of .17, a communication

line with a failure rate of .68 and an application
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program with a failure rate of .11. For these

components, the mean time to failure is 6 months, 8

months, 2 months, and 12 months, respectively.

In the reliability block diagram, blocks represent
components. These are connected together to represent
failure dependencies. If the failure of any of a set of
components will cause the system to fail, a series
connection is appropriate. If the system will fail only if
all components fail, a parallel connection is
appropriate. More complex topologies are also
possible.

In the example, this system will fail if any of the
components fail. Hence, a series solution is
appropriate, as shown in Figure A-1.

The failure rate for a series system is equal to the sum
of the failure rates of the components:

λ S = λ i
i =1

n

∑
For the example, the failure rate is 1.19 per thousand
hours, giving a mttf of 840 hours (1.15 months).
Notice that this is significantly smaller than the mttf
for the least reliable component, the communication
line.

The failure rate for a parallel system is more complex:

1
λ S

= 1
λ ii =1

n

∑
Suppose the communication line is made dually or
triply redundant. Communication line failure rates are
now .68, .34, and .23, respectively, yielding a mttf of 2
months, 4 months, and 6 months. The reliability block
diagram for just the communication line portion is
shown in Figure A-2.

If the dually redundant communication line is now
inserted into the original system reliability block
diagram, Figure A-3 results.

This improves the failure rate to .85 per thousand
hours, for a mttf of 1.6 months. Making the
communication line triply redundant gives a failure
rate of .74 per thousand hours, improving the mttf to
1.85 months.

The connecting lines in a reliability block diagram
reflect failure dependencies, not any form of

information transfer (although these are sometimes the
same). Figure A-3 is interpreted to mean that failure of
the system will occur if the CPU fails, if the memory
fails, if both communication lines fail, or if the
application program fails. Failures in real systems are
sometimes more complex than can be represented by
simply building up diagrams from series and parallel
parts. Figure A-4 gives an example.

Analysis of a reliability block diagram is, in the most
general cases, rather complex. However, if the graph
can be constructed from series and parallel
components, the solution is quite easy.

The advantages of the reliability block diagram are its
simplicity and the fact that failure rates can frequently
be calculated rather simply. The reliability block
diagram is frequently similar to the system block
diagram. Severe limitations are the assumptions that
failures of components are statistically independent,
and that failure rates are constant over time. Complex
nonrepairable systems are better analyzed using a fault
tree, while analysis of repairable systems requires the
use of a Markov model.

A.2.2.  Fault Tree Analysis

The use of fault tree models has developed out of the
missile, space, and nuclear power industries.
Additional discussion on general fault tree analysis
(FTA) and its application to computer software can be
found in Altschul 1987, Belli 1990, Bishop 1990,
Bowman 1991, Connolly 1989, Dhillon 1983, Frankel
1984, Guarro 1991, Hansen 1989, Henley 1985,
Kandel 1988, Leveson 1983, McCormick 1981, and
Pages 1986.

One begins by selecting an undesirable event, such as
the failure of the computer system. In more complex
systems that use computers as subsystems, the failure
could involve portions of the larger reactor system as
well.

The fault tree is developed by successively breaking
down events into lower-level events that generate the
upper-level event; the tree is an extended form of
AND-OR tree, shown in Figure A-5.

This diagram means that event E1 occurs only if both
of events E2 and E3 occur. E2 can occur if either of E4
or E5 occur. Event E3 will occur if any two of E6, E7,
and E8 occur. Fault trees are generally constructed
using AND, OR, and R-of-N combinations.
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Figure A-1.  Reliability Block Diagram of a Simple System
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Figure A-2.  Reliability Block Diagram of Single, Duplex, and Triplex Communication Line



Appendix

90

CPU

.23

Memory

.17

Appln
Program

.11

Comm.
Line

Comm.
Line

Figure A-3.  Reliability Block Diagram of Simple System with Duplexed Communication Line

Figure A-4.  Reliability Block Diagram that Cannot Be Constructed from Serial and Parallel Parts
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Figure A-5.  Simple Fault Tree
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The fault tree is expanded “downwards” until events
are reached whose probability can be given directly.
Note the assumption that the occurrence of the events
at the bottom of the tree are mutually independent. In
many cases, the actual probabilities of these events are
estimated (or simply guessed); this is particularly true
if they represent human failures, uncontrollable
external events, software failures or the like. In
general, the same event may occur several times at the
lowest level if it can contribute to the main failure in
several ways.

The fault tree can be evaluated from bottom to top.

Consider the tree shown in Figure A-6, in which the

lowest level events are not replicated. Suppose
pj (t)denotes the probability that event Ej  will occur

by time t, and an AND node is to be evaluated.

Here, p1(t) = p2(t) ⋅ p3(t); probabilities at AND

nodes multiply. If there is an OR node, as shown in

Figure A-7, have
p1(t) =1− (1− p2(t)) ⋅ (1− p3(t)) . Generalization

to AND and OR nodes with more than two events

should be clear. An R-of-N node represents a Boolean

combination of AND and OR nodes, so its evaluation

is straightforward, though tedious.

In practice, fault trees tend to have thousands of basic
events, and replication of basic events is common.
Analysis of such a tree requires computer assistance.
Some minor generalizations of fault trees are possible;
in particular, common mode failures can be handled
with some difficulty.

E1

and

E2 E3

Figure A-6.  AND Node Evaluation
in a Fault Tree

E1

or

E2 E3

Figure A-7.  OR Node Evaluation in a Fault Tree

Connolly gives an example of a software fault tree for
a patient monitoring system. A portion of the tree is
shown in Figure A-8, modified from Connolly 1989.
The various events in the tree are described as follows:

E1. The patient monitor incorrectly reports the
patient status.

E2. Faulty data algorithms

E3. Faulty patient data detection and
reporting algorithms

E5. Failure to accurately report
patient data over specified input
range.

E51. ECG accuracy.

E52. Pressure accuracy.

E53. Temperature accuracy.

E54. SaO2 accuracy.

E55. NIBP accuracy.

E56. CO accuracy.

E57. ECG resp accuracy.

E6. Failure to update patient data
values within specified response time

E61. ECG response time.

E62. Pressure response time.

E63. Temperature response
time.

E64. SaO2 response time.

E65. NIBP response time.

E66. CO response time.

E67. ECG resp response time.

E4. Faulty alarm detection and reporting
algorithms.

E7. Failure of each supported
parameter to alarm within specified
limit.
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E71. ECG alarm limit.

E72. Pressure alarm limit.

E73. Temperature alarm limit.

E74. SaO2 alarm limit.

E75. NIBP alarm limit.

E76. CO alarm limit.

E77. ECG resp alarm limit.

E8. Failure of each supported
parameter to alarm within specified
time.

E81. ECG alarm time.

E82. Pressure alarm time.

E83. Temperature alarm time.

E84. SaO2 alarm time.

E85. NIBP alarm time.

E86. CO alarm time.

E87. ECG resp alarm time.

Fault trees provide a systematic and widely-used
method for analyzing failures. Provided that one has
accurate knowledge of the probabilities of the basic
events, calculation of the probability of the top event is
straightforward. Computer programs exist that can do
this computation.

On the other hand, fault trees tend to become very
large, particularly for software. Fault trees do not
handle dynamic time-dependent events very well, and
may not reveal the consequences of events occurring in
the middle of the tree.

E51
...

E57

or

E61
...

E67

or

E5 E6

or

E3

E71
...

E77

or

E81
...

E87

or

E8E7

or

E4

and

E2

E1

or

......

Figure A-8.  Example of a Software Fault Tree



Appendix

93

A.2.3.  Event Tree Analysis

Event trees are similar to fault trees, except that an
event tree is used to analyze the consequences of an
event instead of its cause. The author has not seen any
literature on the use of event trees for software. Brief
general descriptions are given in Bishop 1990 and
McCormick 1981. The discussion here is
correspondingly brief.

To construct an event tree, an initiating event is
selected in some system component, such as a wire
breaking, an operator giving an incorrect command, or
a software bug being executed. The component may
react in a way that will be considered successful or
unsuccessful. The system reacts by entering a success
state or a failure state. This new state may itself cause
a system reaction that can again be labeled as success
or failure. Some states may have no successors if no
further response to the initiating event can occur. For
example, complete recovery from the fault or the
occurrence of an accident may have no successor
states.

This results in a tree called the event tree. An example

is shown in Figure A-9, where the Ej  are events, Sj  is

the probability that the system will react successfully

to Ej  and Fj  is the probability that the system will

react unsuccessfully. Note that Sj + Fj =1.

The probability of the final outcomes can be calculated

by multiplying the probabilities of the path from E0 to

the terminal event. For example,

prob[E7] = F0 ⋅ S2 ⋅ S5

Some of the terminal events will constitute system

failures, such as accidents. The probability of ending

up in a system failure state can be calculated by adding

up the probabilities of the events in the set. Suppose

E4, E6 and E8  represent accidents. Then the

probability of having an accident is just

prob[accident] = prob[E4] + prob[E6] + prob[E8]

= S0 ⋅ F1 + F0 ⋅ F2 + F0 ⋅ S2 ⋅ F5

Event trees are easy to draw and easy to understand.
However, it is difficult to take different failure modes
into account, particularly those involving dependent
failures, common mode failures and subsystem
interactions. This should not be the only analysis
method used.

A.2.4.  Failure Modes and Effects Analysis

Failure modes and effects analysis (FMEA), and its
extension to failure modes, effects and criticality
analysis (FMECA), are used to analyze the
consequences of component failures. They are
frequently performed during the design of a system in
order to identify components that require extra care in
design and construction. The technique can also be
used to identify portions of a system in which redesign
can yield significantly improved reliability and safety.
The author has not seen either of these techniques
suggested specifically for software. For more
information, see Bishop 1990, Frankel 1984, Kara-
Zaitri 1991, McCormick 1981, McKinney 1991, and
Wei 1991.

E0

E1 E2

E3 E4 E5 E6

E7 E8

S0 F0

S1 F1 S2 F2

S5 F5

Figure A-9.  Simple Event Tree
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FMECA is largely a qualitative analysis procedure.
The results will be a worksheet documenting failure
modes, their effects and proposed corrective actions.
Wei suggests the following procedure.

1. Define the ground rules. The following items
should be considered:

a. Determine the level of detail to which
components will be divided. During the early
design phase, not much detail will be known,
so the analysis will be carried out at a
relatively high level. Later on, when more
detail is known about the structure of the
system, the FMECA can be redone at the new
level. At some point, software may become a
system component.

b. Define the conditions under which the system
will operate. For electrical and mechanical
equipment, this would include operating
temperature, humidity, and cleanliness. For
software it could include the computer system
on which it will run, I/O equipment,
communication equipment, and operating
systems and compilers.

c. Define extraordinary environmental
conditions that must be considered. For
hardware, this includes water, wind, fire, and
earthquake. For software, this might be a
hardware failure, such as a stuck bit in a
register.

d. Define successful operation. That is, how will
one know that the system is operating
correctly?

e. Define failure. That is, how will one know
that the system is performing incorrectly?

2. Prepare the FMECA plan. Wei states that the
following should be included in the plan:
worksheet formats, ground rules (discussed
above), analysis assumptions, identification of the
lowest level components, methods of coding, a
description of the system, and definitions of
failures.

3. Execute the plan. The following steps will be
carried out.

a. Determine the breakdown of the system
structure, and document it. This can be done
using a Functional Level Breakdown
Structure (FLBS), Work Breakdown Structure
(WBS), or any equivalent method.

b. Use a consistent coding system so that each
component can be uniquely identified. This is
typically done by numbers separated by
decimal points: for example, a motor
assembly could be number 3.4; the motor in
the assembly, 3.4.5; and a fuse in the motor,
3.4.5.2.

c. Construct a functional block diagram (FBD)
of the system and a reliability block diagram.
These illustrate the flow of materials through
the system, the flow of information through
the system, system interfaces,
interrelationships and interdependencies of
the various components.

d. Identify potential failure modes for all
components and interfaces. Define the effects
of such failures on the operation of the
system.

e. Classify each failure in terms of the severity
of the worst potential consequences of the
failure and the probability of the failure
occurring.

f. Calculate the criticality factor for each failure,
as the product of the probability of failure and
the severity of the consequences. Further
analysis using fault trees, event trees, or other
methods may be necessary for failures with
large criticality factors.

g. Identify changes to the design that can
eliminate the failure or control the risk.

h. Identify the effects of such design changes,
and make recommendations as to carrying out
the changes.

i. Document the entire analysis, and discuss all
problems that could not be resolved.

Severity may be determined by a four-level
classification scheme. Each failure mode is assigned a
number from 4 to 1, according to the following list.

4 Catastrophic failures can lead to loss of life,
severe reduction of the system's potential
output, or failures of high level components.

3 Critical failures can lead to personal injury,
severe reduction in the output of a portion of
the system, or serious degradation of system
performance.

2 Minor (or marginal) failures cause some
degradation of system performance or output,
but they cannot lead to death or injury.
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1 Insignificant (safe) failures have negligible
effect on the system's performance or output.

The probability of occurrence factor may also be
defined using a scale. Again, assign a number chosen
from the following list, or assign the estimated
probability of failure.

5 Frequent failures, defined as a single failure
mode probability during an operating time
interval that is greater than 0.20.

4 Reasonable failures, defined as a single
failure mode probability between 0.10 and
0.20.

3 Occasional failures, defined as a single failure
mode probability between 0.01 and 0.10.

2 Remote failures, defined as a single failure
mode probability between 0.001 and 0.01.

1 Extremely unlikely failures, defined as a
single failure mode probability less than
0.001.

FMEA and FMECA are systematic methods that are
widely used to analyze failures and to discover the top
events for fault trees. They can be used early in the
system design stage, and can thus affect the design in
such a way as to reduce hazards. This analysis does
tend to be quite expensive and time consuming,
although that must be weighed against the
consequences of accidents and other failures that might
be missed.

A.2.5.  Markov Models

Markov models are used to capture the idea of system
state, and a probabilistic transition between states.
Here, the state represents knowledge of which
components are operational and which are being
repaired (if any). See Aldemir 1987, Amer 1987,
Bishop 1990, Bobbio 1986, Cheung 1980, Geist 1986,

Pages 1986, Siegrist 1988, Siegrist 1988a, and Smith
1988 for a more complete introduction.

Straightforward block diagram models and fault tree
models can be evaluated using Boolean algebra, as
described earlier. More complex models are generally
translated into Markov models first. Systems whose
components are repairable and systems where
component failures have interactions are usually
modeled directly by Markov models, with cycles. A
number of examples are given here.

Throughout this section, a hardware system S with

components C1,C2,...,Cn  is considered; there may be

more than one instance of each component.

Component Cj  has constant failure rate λ j  and

constant repair rate µ j .

Begin with a system that contains three CPUs. Only
one is required for operation; the other two provide
redundancy. Only one repair station is available, so
even if more than one CPU is down, repairs happen
one at a time. If state k is used to mean “k CPUs are
operating,” the Markov model is shown in Figure
A-10.

This has a striking resemblance to a performance
model of a single queue with three servers and limited
queue size and can be solved in the same way to yield
the probabilities of being in each of the four states
(Sauer 1981). The interpretation is that the system is
operational except in state 0.

Now, suppose two memories are added to the system.

Failure rates are λ c  and µm for the CPUs and

memories, respectively, and similar notation is used for

repair rates. The label “k,l” for states, means “k CPUs

and l memories are operational.” The system is

operational except in states “0,0,” “0,i,” and “j,0.” The

diagram is given in Figure A-11.

3 2 1 0

µ µµ

3λ 2λ λ

Figure A-10.  A Simple Markov Model of a System with Three CPUs
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Figure A-11.  Markov Model of a System with CPUs and Memories

It is clearly possible to model the case where failure
rates vary with circumstances. In the first example
(with three CPUs), it might happen that each CPU has
a failure rate of λ when all three are available, λ' if two
are available and λ'' if only one is available. This might
reflect a situation where the load is shared among all
operational CPUs; increased load causes an increased
failure rate for some reason: λ < λ' < λ''. The diagram
is modified as shown in Figure A-12.

Failure rates in computer systems vary over time. In
particular, failures tend to be more frequent
immediately after preventive maintenance; after this

transition period, the failure rate will return to the
normal value. Transient failures frequently show a
similar pattern: a memory unit will show no failures
for months; then a day with hundreds of transient faults
will occur; the next day, the situation is back to
normal, even though no repair was done. Such
situations cannot be modeled with reliability block
diagrams or fault trees, but can easily be modeled
using Markov chains. The next example shows four
states, modeling the memory problem. State 1 is the
normal operational state and state 0 represents a “hard”
memory failure. The failure rate from state 1 is λ and
the memory repair rate from state 0 is µ.
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There is, however, a very small chance of changing to
state 3, where frequent transient memory errors are
possible. Once there, memory faults occur with rate λ'
>> λ. Since these are transient, “repair” happens very
rapidly (within milliseconds). Eventually the system
returns to state 1 and normality resumes. Note that
hard failures can also occur in state 3; it is assumed
that the process of repairing these will abort the period
of transient faults, so a transition is made to state 0.
Other models are possible, of course. See Figure A-13.

This technique can be used to fit a variety of problems,
ranging from simple to complex. Parametric studies
can be carried out, which can be used to uncover the
impacts of different system configurations, different
activity rates, and different repair strategies. However,
large Markov models are difficult to solve analytically,
so simulation becomes necessary. Most Markov
models of real systems have very many states, so are
large. Solving Markov models usually requires much
computer assistance, and computer programs do exist
to help.

A.2.6.  Petri Net Models

A Petri net is an abstract formal model of information
flow. Petri nets are used to analyze the flow of
information and control in systems, particularly
systems that may exhibit asynchronous and concurrent
activities. The major use of Petri nets has been the
modeling of systems of events in which it is possible
for some events to occur concurrently, but there are
constraints on the concurrence, precedence, or
frequency of these occurrences. One application, for
example, is to analyze resource usage in
multiprogramming systems. Extensions have been
created to permit performance analysis, and to model
time in computer systems. See Peterson 1977 for a
general introduction to Petri nets, and the following for
applications to reliability and safety: Bishop 1990,
Geist 1986, Hansen 1989, Hura 1988, Jorgenson 1989,
Kohda 1991, Leveson 1987, Ostroff 1989, Shieh 1989.

3 2 1 0

µ µµ

3λ 2λ' λ"

Figure A-12.  Simple Markov Model with Varying Failure Rates

1 3 2

0

ρ

ρ'

λ'

µ'

λ µ
λ

Figure A-13.  Markov Model of a Simple System with Transient Faults
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A Petri net is a marked bipartite directed graph. The

graph contains two types of nodes: circles (called

places) and bars (called transitions). These nodes,

places, and transitions are connected by directed arcs

from places to transitions and from transitions to

places. If an arc is directed from node i to node j (one

of which is a place and the other of which is a

transition), then i is an input to j and j is an output of i.

In Figure A-14, place p1 is an input to transition t2 ,

while places p2 and p3 are outputs of transition t2 ..

The execution of a Petri net is controlled by the
position and movement of markers (called tokens) in
the net. Tokens, indicated by black dots, reside in the
circles representing the places of the net. A Petri net
with tokens is a marked Petri net. Figure A-15 shows
an example of a marked Petri net; it is just the former
example, with a marking added.

The use of tokens is subject to certain rules. Tokens are

moved by the firing of the transitions of the net. A

transition is enabled for firing only if there is at least

one token in each of its input places. The transition

fires by removing one token from each input place, and

placing a new token in each output place. In Figure A-

15, transition t2  is the only one enabled. If it fires,

Figure A-16 results.

The result of the firing is to remove the token from p1

and add tokens to p2 and p3. As a consequence, t1,

t3 and t5 are enabled. If t1 and then t2  now fire,

notice that place p3 will have two tokens. As a result,

t5 may now fire, followed by t3.

On the other hand, if t3 fires, only t1 remains enabled.

t5 cannot fire, since the token in its input place p3 has

been used up.

This brief discussion encompasses the components of
basic Petri nets.

Consider a computer system that permits concurrent or
parallel events to occur. Petri nets can be used to
model (among other things) two important aspects of
such systems: events and conditions. In this view,
certain conditions will hold in the system at any
moment in time. The fact that these conditions hold
may cause the occurrence of certain events. The

occurrence of these events may change the state of the
system, causing some of the previous conditions to
cease holding, and causing other conditions to begin to
hold.

For example, suppose the following two conditions
hold: a disk drive is needed and a disk drive is
available. This might cause the event allocate the disk
drive to occur. The occurrence of this event results in
the termination of the condition a disk drive is
available and the beginning of the event no disk drive
is available.

The Petri net models conditions by places and events
by transitions. The occurrence of an event is modeled
by the firing of the corresponding transition.

Another example involves the mutual exclusion
problem. This is a problem of enforcing coordination
of processes in such a way that particular sections of
code called critical regions, one in each process, are
mutually excluded in time. That is, if Process 1 is
executing its critical region, then Process 2 may not
begin the critical region until Process 1 has left its
critical region.

This problem can easily be solved by using P and V
synchronization operations. They operate on
semaphores, and P and V are the only instructions
allowed to execute on a semaphore. A semaphore can
be thought of as a variable that takes integer values. P
and V are defined as follows; each of these definitions
describes a primitive instruction, which is carried out
by the computer without interruption.

P(S)wait until S > 0; then set S = S—1

V(S) S = S + 1

Notice that a process executing a P instruction must
wait until the semaphore is positive before it can
decrement it and continue. Code for both processes
looks like this:

P(mutex)

execute critical region

V(mutex)

where mutex is a global mutual exclusion semaphore
used by both processes.

To model this as a Petri net, consider the semaphore to
be a place. A V operation places a token in the
semaphore; a P operation removes a token. The
solution to the mutual exclusion problem is shown in
Figure A-17.
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Figure A-14.  An Unmarked Petri Net
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Figure A-15.  Example of a Marked Petri Net
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p3.
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Figure A-16.  The Result of Firing Figure A-15

p1 . . p3

.
mutex

p2 p4

Figure A-17.  A Petri Net for the Mutual Exclusion Problem
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Finally, Figure A-18 shows an example of a Petri net
that models a computer-controlled railroad crossing
gate, taken from Leveson 1987. Notice that p1 fires as
the train approaches the crossing. At this point, p2 and
p5 are marked, so transitions t2  and t4  may fire. If t2

fires first, the train is located within the crossing and
the gate is still up, which is a hazard.

Petri nets can be very useful in modeling system state
changes that are caused by triggering events. They can
be analyzed to show the presence or absence of safety
properties, such as hazardous conditions, system
deadlock, or unreachable states. Concurrency control
and resource allocation can be modeled, and mixed
process, computer hardware, computer software, and
operator components can be included in the model.
Extensions exist that incorporate timing, both
deterministic and stochastic.

A.3.  Reliability Growth Models

The models considered in the last section all implicitly
assume that the system being modeled doesn't change.
If, for example, the failure rate of a component is
changed by replacing it with a new model, the
reliability model must be re-evaluated.

This standard reliability model is satisfactory for
systems whose components remain unchanged for long
periods of time, so sufficient faults occur to permit a
failure rate to be determined. It does not apply to
systems that are undergoing design changes. In many
cases, faults in software systems are fixed as they are
discovered, so there is never enough experience to
directly calculate a failure rate.

From an application viewpoint, software and hardware
faults are different in kind. As a general rule, all
hardware faults that users see are operational or
transient in nature. All application software faults, on
the other hand, are design faults. When a system
failure is traced to a software fault (bug), the software
is repaired (the bug is fixed). In a sense, this results in
a new program—certainly the failure rate has changed.
As a consequence, too few faults are executed to
permit a failure rate to be calculated before the
program is changed.

Consider a software system S. Failures occur at
execution times t1,t2,...,tn. After each failure the
fault that caused the failure may be repaired; thus,
there is a sequence of programs S= S0,S1,...,Sn ,
where Sj  represents a modification of Sj −1,
1≤ j ≤ n If the bug couldn't be found before another
failure occurs, it could happen that Sj = Sj −1.

p2
before
crossing

t1

p3
within
crossing

t2

t3

p4
past

Train

p1
approach

p12 - down

Railroad
Crossing
Gate

t6

t7

p11 - up

Computer

p5

t4 p9

p7

t5

p8

p10

p6

Figure A-18.  Petri Net for a Railroad Crossing
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A technique was developed several decades ago in the
aerospace industry for modeling hardware reliability
during design and test. Such a model is called a
Reliability Growth Model. A component is tested for a
period of time, during which failures occur. These
failures lead to modifications to the design or
manufacture of the component; the new version then
goes back into test. This cycle is continued until design
objectives are met. A modification of this technique
seems to work quite well in modeling software (which,
in a sense, never leaves the test phase).

Software reliability growth is a very active research
area, and no attempt is made here to list all models that
have been described. The book by Musa (Musa 1987)
is an excellent starting point for additional information.

Figure A-19 shows some typical failure data (taken
from Musa 1987, p. 305) of a program running in a
user environment. In spite of the random fluctuations
shown by the data (pluses in the figure), it seems clear
that the program is getting better—the time between
failures appears to be increasing. This is confirmed by
the solid curve, showing a five point moving average.

A reliability growth model can be used on data such as
shown in the figure to predict future failure rates from
past behavior of the program, even when the program
is continually changing as bugs are fixed. There are at
least three important applications of an estimate of
future failure rates.

• As a general rule, the testing phase of a software
project continues until personnel or money are
exhausted. This is not exactly a scientific way to
determine when to stop testing. As an alternative,
testing can continue until the predicted future
failure rate has decreased to a level specified
before testing begins. Indeed, this was an original
motivation for the development of reliability
growth models.

When used for this purpose, it is important to note that
the testing environment is generally quite different
from the production environment. Since testing is
intended to force failures, the failure rate predicted
during testing should be much higher than the actual
failure rate that will be seen in production.
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Figure A-19.  Execution Time Between Successive Failures of an Actual System
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• Once into production, the failure rate can be
monitored. Most software is maintained and
enhanced during its lifetime; monitoring failure
rates can be used to judge the quality of such
efforts. The process of modifying software
inevitably perturbs the program's structure.
Eventually, this decreases quality to the point that
failures occur faster than they can be fixed.
Monitoring the failure rate over time can help
predict this point, in time for management to make
plans to replace the program.

• Some types of real world systems have (or should
have) strict legal requirements on failure rates.
Nuclear reactor control systems are an example. If
a control system is part of the larger system, the
failure rate for the entire system will require
knowledge of the failure rate of the computer
portion. However, note that reliability growth
modeling is not a substitute for actual analysis,
review and testing. The technique can be used to
predict when the software will be ready for
acceptance testing, and can be used to monitor the
progress up to that state. Acceptance testing will
still be required if an accurate reliability figure is
wanted.

There is an important limitation to this technique when
very high reliability is required. As Butler points out,
reliability growth techniques cannot be used if failure
rates of less than about 10-4 failures per hour are
required (Butler 1991). For instance, six programs
were examined using data derived from reliability
growth testing. These programs would require from
20–65 years of testing to demonstrate failure rates of
10-11.

A great variety of reliability growth models have been
developed. These vary according to the basic
assumptions of the specific model; for example, the
functional form of the failure intensity. Choice of a
specific model will depend, of course, on the particular
objectives of the modeling effort. Once this is done,
and failure data is collected over time, the model can
be used to calculate a point or interval estimate of the
failure rate. This is done periodically—say, after every
tenth failure.

In the remainder of this section, a few of the early
software reliability growth models will be described.
See Musa 1987 for more information.

A.3.1.  Duane Model

The original reliability growth model proposed by

Duane in 1964 suggests that the failure rate at time t

can be given by λ (t) = α ⋅β ⋅ tβ −1 (Healey 1987).

Knowing the times ti  that the first m failures occur

permits maximum likelihood estimates of α and β to

be calculated:

β = m÷ ln(tm / ti )
i =1

m−1

∑
α = m

tm
β  

Healey pointed out that the Duane model is sensitive to
early failures, and suggested a recursive procedure:

γ4 = 0.25⋅ (t1 + t2 + t3 + t4)

γm = (1− w) ⋅ γm−1 + w ⋅ (tm − tm−1),

for m > 4,
yielding an estimate of the failure rate as

γ(tm) = 1
γm

Healey recommends a weight of w = 0.25.

Using these two methods of calculating a failure rate
(there are others) on the data of Figure A-19 gives the
estimates of failure rate shown in Table A-1.

A.3.2.  Musa Model

This model, developed by Musa in 1975, begins by
assuming that all software faults are equally likely to
occur and are statistically independent. After each
failure the cause is determined and the software is
repaired. Execution does not begin again until after this
has happened. Since execution time is the time
parameter being used, this means that bug fixing in the
model happens instantaneously. It is assumed that no
new bugs are added during the repair process and that
all bugs are equally likely to occur.

Consequently, the failure rate takes on an exponential
form:

λ (t) = α ⋅ n ⋅e−αt

where the software originally had n bugs and α is a
parameter relating to the failure rate of a single fault.
Integrating gives the number of bugs found by time t:

m(t) = n ⋅ (1− e−αt )
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Table A-1.  Failure Rate Calculation

Failure
Number

Time
(hh:mm:ss) Duane Healey

10 9:31 0.014421 0.015750

20 33:06 0.006730 0.006881

30 1:24:09 0.003369 0.002903

40 1:46:20 0.004079 0.004414

50 2:48:09 0.003004 0.001733

60 3:29:19 0.003028 0.002692

70 4:29:45 0.002726 0.002727

80 5:42:47 0.002409 0.001711

90 8:09:21 0.001734 0.001325

100 11:40:15 0.001236 0.000885

110 13:43:36 0.001168 0.001286

120 15:41:25 0.001133 0.001615

130 20:39:24 0.000876 0.000407

The parameters can be estimated in standard ways after
a number of bugs have been found and corrected.

This model has been reported to give good results. The
primary difficulty is the assumption that all bugs are
equally likely to occur. This seems unreasonable. In
practice some bugs seem to occur much more often
than others; indeed the most common bugs will
normally be seen and fixed first. This line of reasoning
gave rise to the next model.

A.3.3.  Littlewood Model

Suppose that the program has n faults when testing

begins. Each of these faults will cause a failure after

some period of time that is distributed exponentially

and independently from any other fault. Instantaneous

debugging is assumed. Assume that failures occur at

times t1,t2,...,ti . After the ith bug has been found,

Littlewood gives a failure rate of

λ (t) = (n − i) ⋅ α
β + ti + t

for ti < t < ti +1

where α and β are parameters to be determined by
maximum likelihood estimates. The expected number
of failures by time t is given by

m(t) = (n − i) ⋅ α ⋅ ln β + ti + t

β + ti







Notice that this function has a step after each failure;
the failure rate decreases abruptly after each bug is
found. This is supposed to reflect the fact that more
common bugs are found first. It has been reported that
this model gives good results.

A.3.4.  Musa-Okumoto Model

This model (also known as the logarithmic Poisson
execution time model) is like the Littlewood model in
that the failure rate function decreases exponentially
with the number of failures experienced. The basic
assumptions are the same as those for the Littlewood
model. The result is:

λ (t) = α
α ⋅β ⋅ t +1

where α is the initial failure rate and β is a parameter.
The expected number of failures by time t is given by
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m(t) = 1
β

⋅ ln(α ⋅β ⋅ t +1)

As is indicated by the large variety of models and the
number of technical papers that are being published,
software reliability models are not as mature as the
models considered in Appendix A.2. They do appear
very promising, and the need is certainly great. It
appears that the models that have been developed so
far are well worth using as part of the software
development process, provided that they are not used
to claim that the software system is sufficiently reliable
for a safety-related application.

One problem with all the models discussed is that they
assume the number of faults in the software is fixed,
although the number is not necessarily known. In a
protection system, the environment may affect this
assumption, since things that were not faults at one
time may become faults due to changes in the
environment.

There is also some kind of assumption made about
demands. For a protection system, the steady state
demand requires no action on the part of the system. It
is only when things go wrong that important parts of
the code are actuated—parts that were never used in
normal operation. So the models need to be augmented
to take this difference in execution frequency into
account.

Different kinds of models can be used to solve parts of
a large problem. For example, a complex problem
involving repairable and nonrepairable components
might be modeled using a Markov technique. The
nonrepairable portion might consist of a submodel
analyzed by a reliability block diagram. The
application program portion of that could, in turn, by
modeled by a reliability growth model. This use of
combinations of modeling techniques is a powerful
method of analysis.
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